MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg2 Structured version   Visualization version   GIF version

Theorem ply1divalg2 24659
Description: Reverse the order of multiplication in ply1divalg 24658 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . 3 (Poly1‘(oppr𝑅)) = (Poly1‘(oppr𝑅))
2 ply1divalg.d . . . 4 𝐷 = ( deg1𝑅)
3 eqidd 2819 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘𝑅))
4 eqid 2818 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
5 eqid 2818 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
64, 5opprbas 19308 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
76a1i 11 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘(oppr𝑅)))
8 eqid 2818 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
94, 8oppradd 19309 . . . . . . . 8 (+g𝑅) = (+g‘(oppr𝑅))
109oveqi 7158 . . . . . . 7 (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟)
1110a1i 11 . . . . . 6 ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟))
123, 7, 11deg1propd 24607 . . . . 5 (⊤ → ( deg1𝑅) = ( deg1 ‘(oppr𝑅)))
1312mptru 1535 . . . 4 ( deg1𝑅) = ( deg1 ‘(oppr𝑅))
142, 13eqtri 2841 . . 3 𝐷 = ( deg1 ‘(oppr𝑅))
15 ply1divalg.b . . . 4 𝐵 = (Base‘𝑃)
16 ply1divalg.p . . . . . 6 𝑃 = (Poly1𝑅)
1716fveq2i 6666 . . . . 5 (Base‘𝑃) = (Base‘(Poly1𝑅))
183, 7, 11ply1baspropd 20339 . . . . . 6 (⊤ → (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅))))
1918mptru 1535 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅)))
2017, 19eqtri 2841 . . . 4 (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅)))
2115, 20eqtri 2841 . . 3 𝐵 = (Base‘(Poly1‘(oppr𝑅)))
22 ply1divalg.m . . . 4 = (-g𝑃)
2320a1i 11 . . . . . 6 (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅))))
2416fveq2i 6666 . . . . . . . 8 (+g𝑃) = (+g‘(Poly1𝑅))
253, 7, 11ply1plusgpropd 20340 . . . . . . . . 9 (⊤ → (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅))))
2625mptru 1535 . . . . . . . 8 (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅)))
2724, 26eqtri 2841 . . . . . . 7 (+g𝑃) = (+g‘(Poly1‘(oppr𝑅)))
2827a1i 11 . . . . . 6 (⊤ → (+g𝑃) = (+g‘(Poly1‘(oppr𝑅))))
2923, 28grpsubpropd 18142 . . . . 5 (⊤ → (-g𝑃) = (-g‘(Poly1‘(oppr𝑅))))
3029mptru 1535 . . . 4 (-g𝑃) = (-g‘(Poly1‘(oppr𝑅)))
3122, 30eqtri 2841 . . 3 = (-g‘(Poly1‘(oppr𝑅)))
32 ply1divalg.z . . . 4 0 = (0g𝑃)
3315a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘𝑃))
3421a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘(Poly1‘(oppr𝑅))))
3527oveqi 7158 . . . . . . 7 (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟)
3635a1i 11 . . . . . 6 ((⊤ ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟))
3733, 34, 36grpidpropd 17860 . . . . 5 (⊤ → (0g𝑃) = (0g‘(Poly1‘(oppr𝑅))))
3837mptru 1535 . . . 4 (0g𝑃) = (0g‘(Poly1‘(oppr𝑅)))
3932, 38eqtri 2841 . . 3 0 = (0g‘(Poly1‘(oppr𝑅)))
40 eqid 2818 . . 3 (.r‘(Poly1‘(oppr𝑅))) = (.r‘(Poly1‘(oppr𝑅)))
41 ply1divalg.r1 . . . 4 (𝜑𝑅 ∈ Ring)
424opprring 19310 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
4341, 42syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
44 ply1divalg.f . . 3 (𝜑𝐹𝐵)
45 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
46 ply1divalg.g2 . . 3 (𝜑𝐺0 )
47 ply1divalg.g3 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
48 ply1divalg.u . . . 4 𝑈 = (Unit‘𝑅)
4948, 4opprunit 19340 . . 3 𝑈 = (Unit‘(oppr𝑅))
501, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49ply1divalg 24658 . 2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺))
5141adantr 481 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑅 ∈ Ring)
5245adantr 481 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝐺𝐵)
53 simpr 485 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑞𝐵)
54 ply1divalg.t . . . . . . . . 9 = (.r𝑃)
5516, 4, 1, 54, 40, 15ply1opprmul 20335 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5651, 52, 53, 55syl3anc 1363 . . . . . . 7 ((𝜑𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5756eqcomd 2824 . . . . . 6 ((𝜑𝑞𝐵) → (𝑞 𝐺) = (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))
5857oveq2d 7161 . . . . 5 ((𝜑𝑞𝐵) → (𝐹 (𝑞 𝐺)) = (𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞)))
5958fveq2d 6667 . . . 4 ((𝜑𝑞𝐵) → (𝐷‘(𝐹 (𝑞 𝐺))) = (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))))
6059breq1d 5067 . . 3 ((𝜑𝑞𝐵) → ((𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6160reubidva 3386 . 2 (𝜑 → (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6250, 61mpbird 258 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wtru 1529  wcel 2105  wne 3013  ∃!wreu 3137   class class class wbr 5057  cfv 6348  (class class class)co 7145   < clt 10663  Basecbs 16471  +gcplusg 16553  .rcmulr 16554  0gc0g 16701  -gcsg 18043  Ringcrg 19226  opprcoppr 19301  Unitcui 19318  Poly1cpl1 20273  coe1cco1 20274   deg1 cdg1 24575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-subrg 19462  df-lmod 19565  df-lss 19633  df-rlreg 19984  df-psr 20064  df-mvr 20065  df-mpl 20066  df-opsr 20068  df-psr1 20276  df-vr1 20277  df-ply1 20278  df-coe1 20279  df-cnfld 20474  df-mdeg 24576  df-deg1 24577
This theorem is referenced by:  q1peqb  24675
  Copyright terms: Public domain W3C validator