Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divex Structured version   Visualization version   GIF version

Theorem ply1divex 23817
 Description: Lemma for ply1divalg 23818: existence part. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divex.o 1 = (1r𝑅)
ply1divex.k 𝐾 = (Base‘𝑅)
ply1divex.u · = (.r𝑅)
ply1divex.i (𝜑𝐼𝐾)
ply1divex.g3 (𝜑 → (((coe1𝐺)‘(𝐷𝐺)) · 𝐼) = 1 )
Assertion
Ref Expression
ply1divex (𝜑 → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   0 ,𝑞   𝐹,𝑞   𝐼,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   𝐵,𝑞   ,𝑞   𝐷,𝑞   𝐺,𝑞   𝜑,𝑞   · ,𝑞
Allowed substitution hints:   1 (𝑞)   𝐾(𝑞)

Proof of Theorem ply1divex
Dummy variables 𝑑 𝑓 𝑟 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6153 . . . . 5 (𝐹 = 0 → (𝐷𝐹) = (𝐷0 ))
21breq1d 4628 . . . 4 (𝐹 = 0 → ((𝐷𝐹) < ((𝐷𝐺) + 𝑑) ↔ (𝐷0 ) < ((𝐷𝐺) + 𝑑)))
32rexbidv 3046 . . 3 (𝐹 = 0 → (∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑) ↔ ∃𝑑 ∈ ℕ0 (𝐷0 ) < ((𝐷𝐺) + 𝑑)))
4 nnssnn0 11247 . . . . 5 ℕ ⊆ ℕ0
5 ply1divalg.r1 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
65adantr 481 . . . . . . . . 9 ((𝜑𝐹0 ) → 𝑅 ∈ Ring)
7 ply1divalg.f . . . . . . . . . 10 (𝜑𝐹𝐵)
87adantr 481 . . . . . . . . 9 ((𝜑𝐹0 ) → 𝐹𝐵)
9 simpr 477 . . . . . . . . 9 ((𝜑𝐹0 ) → 𝐹0 )
10 ply1divalg.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
11 ply1divalg.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
12 ply1divalg.z . . . . . . . . . 10 0 = (0g𝑃)
13 ply1divalg.b . . . . . . . . . 10 𝐵 = (Base‘𝑃)
1410, 11, 12, 13deg1nn0cl 23769 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
156, 8, 9, 14syl3anc 1323 . . . . . . . 8 ((𝜑𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
1615nn0red 11304 . . . . . . 7 ((𝜑𝐹0 ) → (𝐷𝐹) ∈ ℝ)
17 ply1divalg.g1 . . . . . . . . . 10 (𝜑𝐺𝐵)
18 ply1divalg.g2 . . . . . . . . . 10 (𝜑𝐺0 )
1910, 11, 12, 13deg1nn0cl 23769 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
205, 17, 18, 19syl3anc 1323 . . . . . . . . 9 (𝜑 → (𝐷𝐺) ∈ ℕ0)
2120nn0red 11304 . . . . . . . 8 (𝜑 → (𝐷𝐺) ∈ ℝ)
2221adantr 481 . . . . . . 7 ((𝜑𝐹0 ) → (𝐷𝐺) ∈ ℝ)
2316, 22resubcld 10410 . . . . . 6 ((𝜑𝐹0 ) → ((𝐷𝐹) − (𝐷𝐺)) ∈ ℝ)
24 arch 11241 . . . . . 6 (((𝐷𝐹) − (𝐷𝐺)) ∈ ℝ → ∃𝑑 ∈ ℕ ((𝐷𝐹) − (𝐷𝐺)) < 𝑑)
2523, 24syl 17 . . . . 5 ((𝜑𝐹0 ) → ∃𝑑 ∈ ℕ ((𝐷𝐹) − (𝐷𝐺)) < 𝑑)
26 ssrexv 3651 . . . . 5 (ℕ ⊆ ℕ0 → (∃𝑑 ∈ ℕ ((𝐷𝐹) − (𝐷𝐺)) < 𝑑 → ∃𝑑 ∈ ℕ0 ((𝐷𝐹) − (𝐷𝐺)) < 𝑑))
274, 25, 26mpsyl 68 . . . 4 ((𝜑𝐹0 ) → ∃𝑑 ∈ ℕ0 ((𝐷𝐹) − (𝐷𝐺)) < 𝑑)
2816adantr 481 . . . . . . 7 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → (𝐷𝐹) ∈ ℝ)
2921ad2antrr 761 . . . . . . 7 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → (𝐷𝐺) ∈ ℝ)
30 nn0re 11253 . . . . . . . 8 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
3130adantl 482 . . . . . . 7 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → 𝑑 ∈ ℝ)
3228, 29, 31ltsubadd2d 10577 . . . . . 6 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → (((𝐷𝐹) − (𝐷𝐺)) < 𝑑 ↔ (𝐷𝐹) < ((𝐷𝐺) + 𝑑)))
3332biimpd 219 . . . . 5 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → (((𝐷𝐹) − (𝐷𝐺)) < 𝑑 → (𝐷𝐹) < ((𝐷𝐺) + 𝑑)))
3433reximdva 3012 . . . 4 ((𝜑𝐹0 ) → (∃𝑑 ∈ ℕ0 ((𝐷𝐹) − (𝐷𝐺)) < 𝑑 → ∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑)))
3527, 34mpd 15 . . 3 ((𝜑𝐹0 ) → ∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑))
36 0nn0 11259 . . . 4 0 ∈ ℕ0
3710, 11, 12deg1z 23768 . . . . . 6 (𝑅 ∈ Ring → (𝐷0 ) = -∞)
385, 37syl 17 . . . . 5 (𝜑 → (𝐷0 ) = -∞)
39 0re 9992 . . . . . . 7 0 ∈ ℝ
40 readdcl 9971 . . . . . . 7 (((𝐷𝐺) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐷𝐺) + 0) ∈ ℝ)
4121, 39, 40sylancl 693 . . . . . 6 (𝜑 → ((𝐷𝐺) + 0) ∈ ℝ)
42 mnflt 11909 . . . . . 6 (((𝐷𝐺) + 0) ∈ ℝ → -∞ < ((𝐷𝐺) + 0))
4341, 42syl 17 . . . . 5 (𝜑 → -∞ < ((𝐷𝐺) + 0))
4438, 43eqbrtrd 4640 . . . 4 (𝜑 → (𝐷0 ) < ((𝐷𝐺) + 0))
45 oveq2 6618 . . . . . 6 (𝑑 = 0 → ((𝐷𝐺) + 𝑑) = ((𝐷𝐺) + 0))
4645breq2d 4630 . . . . 5 (𝑑 = 0 → ((𝐷0 ) < ((𝐷𝐺) + 𝑑) ↔ (𝐷0 ) < ((𝐷𝐺) + 0)))
4746rspcev 3298 . . . 4 ((0 ∈ ℕ0 ∧ (𝐷0 ) < ((𝐷𝐺) + 0)) → ∃𝑑 ∈ ℕ0 (𝐷0 ) < ((𝐷𝐺) + 𝑑))
4836, 44, 47sylancr 694 . . 3 (𝜑 → ∃𝑑 ∈ ℕ0 (𝐷0 ) < ((𝐷𝐺) + 𝑑))
493, 35, 48pm2.61ne 2875 . 2 (𝜑 → ∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑))
507adantr 481 . . . 4 ((𝜑𝑑 ∈ ℕ0) → 𝐹𝐵)
51 oveq2 6618 . . . . . . . . . 10 (𝑎 = 0 → ((𝐷𝐺) + 𝑎) = ((𝐷𝐺) + 0))
5251breq2d 4630 . . . . . . . . 9 (𝑎 = 0 → ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) ↔ (𝐷𝑓) < ((𝐷𝐺) + 0)))
5352imbi1d 331 . . . . . . . 8 (𝑎 = 0 → (((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
5453ralbidv 2981 . . . . . . 7 (𝑎 = 0 → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
5554imbi2d 330 . . . . . 6 (𝑎 = 0 → ((𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) ↔ (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
56 oveq2 6618 . . . . . . . . . 10 (𝑎 = 𝑑 → ((𝐷𝐺) + 𝑎) = ((𝐷𝐺) + 𝑑))
5756breq2d 4630 . . . . . . . . 9 (𝑎 = 𝑑 → ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) ↔ (𝐷𝑓) < ((𝐷𝐺) + 𝑑)))
5857imbi1d 331 . . . . . . . 8 (𝑎 = 𝑑 → (((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
5958ralbidv 2981 . . . . . . 7 (𝑎 = 𝑑 → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
6059imbi2d 330 . . . . . 6 (𝑎 = 𝑑 → ((𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) ↔ (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
61 oveq2 6618 . . . . . . . . . 10 (𝑎 = (𝑑 + 1) → ((𝐷𝐺) + 𝑎) = ((𝐷𝐺) + (𝑑 + 1)))
6261breq2d 4630 . . . . . . . . 9 (𝑎 = (𝑑 + 1) → ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) ↔ (𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1))))
6362imbi1d 331 . . . . . . . 8 (𝑎 = (𝑑 + 1) → (((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
6463ralbidv 2981 . . . . . . 7 (𝑎 = (𝑑 + 1) → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
6564imbi2d 330 . . . . . 6 (𝑎 = (𝑑 + 1) → ((𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) ↔ (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
6611ply1ring 19550 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
675, 66syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ Ring)
6813, 12ring0cl 18501 . . . . . . . . . . 11 (𝑃 ∈ Ring → 0𝐵)
6967, 68syl 17 . . . . . . . . . 10 (𝜑0𝐵)
7069ad2antrr 761 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ (𝐷𝑓) < ((𝐷𝐺) + 0)) → 0𝐵)
71 ply1divalg.t . . . . . . . . . . . . . . . . 17 = (.r𝑃)
7213, 71, 12ringrz 18520 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Ring ∧ 𝐺𝐵) → (𝐺 0 ) = 0 )
7367, 17, 72syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 0 ) = 0 )
7473oveq2d 6626 . . . . . . . . . . . . . 14 (𝜑 → (𝑓 (𝐺 0 )) = (𝑓 0 ))
7574adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → (𝑓 (𝐺 0 )) = (𝑓 0 ))
76 ringgrp 18484 . . . . . . . . . . . . . . 15 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
7767, 76syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ Grp)
78 ply1divalg.m . . . . . . . . . . . . . . 15 = (-g𝑃)
7913, 12, 78grpsubid1 17432 . . . . . . . . . . . . . 14 ((𝑃 ∈ Grp ∧ 𝑓𝐵) → (𝑓 0 ) = 𝑓)
8077, 79sylan 488 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → (𝑓 0 ) = 𝑓)
8175, 80eqtr2d 2656 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → 𝑓 = (𝑓 (𝐺 0 )))
8281fveq2d 6157 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → (𝐷𝑓) = (𝐷‘(𝑓 (𝐺 0 ))))
8320nn0cnd 11305 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐺) ∈ ℂ)
8483addid1d 10188 . . . . . . . . . . . 12 (𝜑 → ((𝐷𝐺) + 0) = (𝐷𝐺))
8584adantr 481 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → ((𝐷𝐺) + 0) = (𝐷𝐺))
8682, 85breq12d 4631 . . . . . . . . . 10 ((𝜑𝑓𝐵) → ((𝐷𝑓) < ((𝐷𝐺) + 0) ↔ (𝐷‘(𝑓 (𝐺 0 ))) < (𝐷𝐺)))
8786biimpa 501 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ (𝐷𝑓) < ((𝐷𝐺) + 0)) → (𝐷‘(𝑓 (𝐺 0 ))) < (𝐷𝐺))
88 oveq2 6618 . . . . . . . . . . . . 13 (𝑞 = 0 → (𝐺 𝑞) = (𝐺 0 ))
8988oveq2d 6626 . . . . . . . . . . . 12 (𝑞 = 0 → (𝑓 (𝐺 𝑞)) = (𝑓 (𝐺 0 )))
9089fveq2d 6157 . . . . . . . . . . 11 (𝑞 = 0 → (𝐷‘(𝑓 (𝐺 𝑞))) = (𝐷‘(𝑓 (𝐺 0 ))))
9190breq1d 4628 . . . . . . . . . 10 (𝑞 = 0 → ((𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝑓 (𝐺 0 ))) < (𝐷𝐺)))
9291rspcev 3298 . . . . . . . . 9 (( 0𝐵 ∧ (𝐷‘(𝑓 (𝐺 0 ))) < (𝐷𝐺)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))
9370, 87, 92syl2anc 692 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ (𝐷𝑓) < ((𝐷𝐺) + 0)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))
9493ex 450 . . . . . . 7 ((𝜑𝑓𝐵) → ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
9594ralrimiva 2961 . . . . . 6 (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
96 nn0addcl 11280 . . . . . . . . . . . . . . . . . 18 (((𝐷𝐺) ∈ ℕ0𝑑 ∈ ℕ0) → ((𝐷𝐺) + 𝑑) ∈ ℕ0)
9720, 96sylan 488 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ ℕ0) → ((𝐷𝐺) + 𝑑) ∈ ℕ0)
9897adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ((𝐷𝐺) + 𝑑) ∈ ℕ0)
995ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → 𝑅 ∈ Ring)
100 simprl 793 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → 𝑔𝐵)
10110, 11, 13deg1cl 23764 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝐵 → (𝐷𝑔) ∈ (ℕ0 ∪ {-∞}))
102101adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝑔) ∈ (ℕ0 ∪ {-∞}))
10320ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝐺) ∈ ℕ0)
104 peano2nn0 11285 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
105104ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝑑 + 1) ∈ ℕ0)
106103, 105nn0addcld 11307 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝐺) + (𝑑 + 1)) ∈ ℕ0)
107106nn0zd 11432 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝐺) + (𝑑 + 1)) ∈ ℤ)
108 degltlem1 23753 . . . . . . . . . . . . . . . . . . . 20 (((𝐷𝑔) ∈ (ℕ0 ∪ {-∞}) ∧ ((𝐷𝐺) + (𝑑 + 1)) ∈ ℤ) → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) ↔ (𝐷𝑔) ≤ (((𝐷𝐺) + (𝑑 + 1)) − 1)))
109102, 107, 108syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) ↔ (𝐷𝑔) ≤ (((𝐷𝐺) + (𝑑 + 1)) − 1)))
110109biimpd 219 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → (𝐷𝑔) ≤ (((𝐷𝐺) + (𝑑 + 1)) − 1)))
111110impr 648 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷𝑔) ≤ (((𝐷𝐺) + (𝑑 + 1)) − 1))
11220adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ ℕ0) → (𝐷𝐺) ∈ ℕ0)
113112nn0cnd 11305 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ0) → (𝐷𝐺) ∈ ℂ)
114 nn0cn 11254 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ ℕ0𝑑 ∈ ℂ)
115114adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ ℕ0) → 𝑑 ∈ ℂ)
116 peano2cn 10160 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ ℂ → (𝑑 + 1) ∈ ℂ)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ0) → (𝑑 + 1) ∈ ℂ)
118 1cnd 10008 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ0) → 1 ∈ ℂ)
119113, 117, 118addsubassd 10364 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ0) → (((𝐷𝐺) + (𝑑 + 1)) − 1) = ((𝐷𝐺) + ((𝑑 + 1) − 1)))
120 ax-1cn 9946 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
121 pncan 10239 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑑 + 1) − 1) = 𝑑)
122115, 120, 121sylancl 693 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ0) → ((𝑑 + 1) − 1) = 𝑑)
123122oveq2d 6626 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ0) → ((𝐷𝐺) + ((𝑑 + 1) − 1)) = ((𝐷𝐺) + 𝑑))
124119, 123eqtrd 2655 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ0) → (((𝐷𝐺) + (𝑑 + 1)) − 1) = ((𝐷𝐺) + 𝑑))
125124adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (((𝐷𝐺) + (𝑑 + 1)) − 1) = ((𝐷𝐺) + 𝑑))
126111, 125breqtrd 4644 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷𝑔) ≤ ((𝐷𝐺) + 𝑑))
12767ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑃 ∈ Ring)
12817ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝐺𝐵)
1295ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑅 ∈ Ring)
130 ply1divex.i . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐼𝐾)
131130ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝐼𝐾)
132 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . 23 (coe1𝑔) = (coe1𝑔)
133 ply1divex.k . . . . . . . . . . . . . . . . . . . . . . 23 𝐾 = (Base‘𝑅)
134132, 13, 11, 133coe1f 19513 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔𝐵 → (coe1𝑔):ℕ0𝐾)
135134adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (coe1𝑔):ℕ0𝐾)
136 simplr 791 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑑 ∈ ℕ0)
137103, 136nn0addcld 11307 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝐺) + 𝑑) ∈ ℕ0)
138135, 137ffvelrnd 6321 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) ∈ 𝐾)
139 ply1divex.u . . . . . . . . . . . . . . . . . . . . 21 · = (.r𝑅)
140133, 139ringcl 18493 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼𝐾 ∧ ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) ∈ 𝐾) → (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) ∈ 𝐾)
141129, 131, 138, 140syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) ∈ 𝐾)
142 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (var1𝑅) = (var1𝑅)
143 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠𝑃) = ( ·𝑠𝑃)
144 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (mulGrp‘𝑃) = (mulGrp‘𝑃)
145 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
146133, 11, 142, 143, 144, 145, 13ply1tmcl 19574 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) ∈ 𝐾𝑑 ∈ ℕ0) → ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵)
147129, 141, 136, 146syl3anc 1323 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵)
14813, 71ringcl 18493 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Ring ∧ 𝐺𝐵 ∧ ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵) → (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
149127, 128, 147, 148syl3anc 1323 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
150149adantrr 752 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
151103nn0red 11304 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝐺) ∈ ℝ)
152151leidd 10546 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝐺) ≤ (𝐷𝐺))
15310, 133, 11, 142, 143, 144, 145deg1tmle 23798 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) ∈ 𝐾𝑑 ∈ ℕ0) → (𝐷‘((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ≤ 𝑑)
154129, 141, 136, 153syl3anc 1323 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷‘((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ≤ 𝑑)
15511, 10, 129, 13, 71, 128, 147, 103, 136, 152, 154deg1mulle2 23790 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ≤ ((𝐷𝐺) + 𝑑))
156155adantrr 752 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ≤ ((𝐷𝐺) + 𝑑))
157 eqid 2621 . . . . . . . . . . . . . . . 16 (coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) = (coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))
158 eqid 2621 . . . . . . . . . . . . . . . . . . 19 (0g𝑅) = (0g𝑅)
159158, 133, 11, 142, 143, 144, 145, 13, 71, 139, 128, 129, 141, 136, 103coe1tmmul2fv 19580 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘(𝑑 + (𝐷𝐺))) = (((coe1𝐺)‘(𝐷𝐺)) · (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))))
160103nn0cnd 11305 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝐺) ∈ ℂ)
161114ad2antlr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑑 ∈ ℂ)
162160, 161addcomd 10190 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝐺) + 𝑑) = (𝑑 + (𝐷𝐺)))
163162fveq2d 6157 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘((𝐷𝐺) + 𝑑)) = ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘(𝑑 + (𝐷𝐺))))
164 ply1divex.g3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((coe1𝐺)‘(𝐷𝐺)) · 𝐼) = 1 )
165164oveq1d 6625 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((((coe1𝐺)‘(𝐷𝐺)) · 𝐼) · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = ( 1 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))))
166165ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((((coe1𝐺)‘(𝐷𝐺)) · 𝐼) · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = ( 1 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))))
167 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . . 24 (coe1𝐺) = (coe1𝐺)
168167, 13, 11, 133coe1f 19513 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺𝐵 → (coe1𝐺):ℕ0𝐾)
16917, 168syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (coe1𝐺):ℕ0𝐾)
170169ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (coe1𝐺):ℕ0𝐾)
171170, 103ffvelrnd 6321 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐾)
172133, 139ringass 18496 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ (((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐾𝐼𝐾 ∧ ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) ∈ 𝐾)) → ((((coe1𝐺)‘(𝐷𝐺)) · 𝐼) · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = (((coe1𝐺)‘(𝐷𝐺)) · (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))))
173129, 171, 131, 138, 172syl13anc 1325 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((((coe1𝐺)‘(𝐷𝐺)) · 𝐼) · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = (((coe1𝐺)‘(𝐷𝐺)) · (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))))
174 ply1divex.o . . . . . . . . . . . . . . . . . . . . 21 1 = (1r𝑅)
175133, 139, 174ringlidm 18503 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) ∈ 𝐾) → ( 1 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))
176129, 138, 175syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ( 1 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))
177166, 173, 1763eqtr3rd 2664 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) = (((coe1𝐺)‘(𝐷𝐺)) · (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))))
178159, 163, 1773eqtr4rd 2666 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) = ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘((𝐷𝐺) + 𝑑)))
179178adantrr 752 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) = ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘((𝐷𝐺) + 𝑑)))
18010, 11, 13, 78, 98, 99, 100, 126, 150, 156, 132, 157, 179deg1sublt 23791 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑))
181180adantlrr 756 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑))
18277ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑃 ∈ Grp)
183 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑔𝐵)
18413, 78grpsubcl 17427 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Grp ∧ 𝑔𝐵 ∧ (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵) → (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵)
185182, 183, 149, 184syl3anc 1323 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵)
186185adantrr 752 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵)
187186adantlrr 756 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵)
188 simplrr 800 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
189 fveq2 6153 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (𝐷𝑓) = (𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
190189breq1d 4628 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) ↔ (𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑)))
191 oveq1 6617 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (𝑓 (𝐺 𝑞)) = ((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞)))
192191fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (𝐷‘(𝑓 (𝐺 𝑞))) = (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))))
193192breq1d 4628 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → ((𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺)))
194193rexbidv 3046 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺)))
195190, 194imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺))))
196195rspcva 3296 . . . . . . . . . . . . . . 15 (((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) → ((𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺)))
197187, 188, 196syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ((𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺)))
198181, 197mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺))
19967ad3antrrr 765 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝑃 ∈ Ring)
200 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝑞𝐵)
201147adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵)
202 eqid 2621 . . . . . . . . . . . . . . . . . . 19 (+g𝑃) = (+g𝑃)
20313, 202ringacl 18510 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Ring ∧ 𝑞𝐵 ∧ ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵) → (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
204199, 200, 201, 203syl3anc 1323 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
20577ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝑃 ∈ Grp)
206 simplr 791 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝑔𝐵)
207149adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
20817ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝐺𝐵)
20913, 71ringcl 18493 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
210199, 208, 200, 209syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
21113, 202, 78grpsubsub4 17440 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ Grp ∧ (𝑔𝐵 ∧ (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵 ∧ (𝐺 𝑞) ∈ 𝐵)) → ((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞)) = (𝑔 ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
212205, 206, 207, 210, 211syl13anc 1325 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞)) = (𝑔 ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
21313, 202, 71ringdi 18498 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ Ring ∧ (𝐺𝐵𝑞𝐵 ∧ ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵)) → (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) = ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))
214199, 208, 200, 201, 213syl13anc 1325 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) = ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))
215214oveq2d 6626 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) = (𝑔 ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
216212, 215eqtr4d 2658 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞)) = (𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
217216fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) = (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))))
218217breq1d 4628 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))) < (𝐷𝐺)))
219218biimpd 219 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))) < (𝐷𝐺)))
220 oveq2 6618 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) → (𝐺 𝑟) = (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))
221220oveq2d 6626 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) → (𝑔 (𝐺 𝑟)) = (𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
222221fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (𝑟 = (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) → (𝐷‘(𝑔 (𝐺 𝑟))) = (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))))
223222breq1d 4628 . . . . . . . . . . . . . . . . . 18 (𝑟 = (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) → ((𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺) ↔ (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))) < (𝐷𝐺)))
224223rspcev 3298 . . . . . . . . . . . . . . . . 17 (((𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵 ∧ (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))) < (𝐷𝐺)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺))
225204, 219, 224syl6an 567 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
226225rexlimdva 3025 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
227226adantrr 752 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
228227adantlrr 756 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
229198, 228mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺))
230229expr 642 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ 𝑔𝐵) → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
231230ralrimiva 2961 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) → ∀𝑔𝐵 ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
232 fveq2 6153 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝐷𝑔) = (𝐷𝑓))
233232breq1d 4628 . . . . . . . . . . . 12 (𝑔 = 𝑓 → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) ↔ (𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1))))
234 oveq1 6617 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (𝑔 (𝐺 𝑟)) = (𝑓 (𝐺 𝑟)))
235234fveq2d 6157 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (𝐷‘(𝑔 (𝐺 𝑟))) = (𝐷‘(𝑓 (𝐺 𝑟))))
236235breq1d 4628 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → ((𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺) ↔ (𝐷‘(𝑓 (𝐺 𝑟))) < (𝐷𝐺)))
237236rexbidv 3046 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺) ↔ ∃𝑟𝐵 (𝐷‘(𝑓 (𝐺 𝑟))) < (𝐷𝐺)))
238 oveq2 6618 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑞 → (𝐺 𝑟) = (𝐺 𝑞))
239238oveq2d 6626 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑞 → (𝑓 (𝐺 𝑟)) = (𝑓 (𝐺 𝑞)))
240239fveq2d 6157 . . . . . . . . . . . . . . 15 (𝑟 = 𝑞 → (𝐷‘(𝑓 (𝐺 𝑟))) = (𝐷‘(𝑓 (𝐺 𝑞))))
241240breq1d 4628 . . . . . . . . . . . . . 14 (𝑟 = 𝑞 → ((𝐷‘(𝑓 (𝐺 𝑟))) < (𝐷𝐺) ↔ (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
242241cbvrexv 3163 . . . . . . . . . . . . 13 (∃𝑟𝐵 (𝐷‘(𝑓 (𝐺 𝑟))) < (𝐷𝐺) ↔ ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))
243237, 242syl6bb 276 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺) ↔ ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
244233, 243imbi12d 334 . . . . . . . . . . 11 (𝑔 = 𝑓 → (((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)) ↔ ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
245244cbvralv 3162 . . . . . . . . . 10 (∀𝑔𝐵 ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)) ↔ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
246231, 245sylib 208 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
247246exp32 630 . . . . . . . 8 (𝜑 → (𝑑 ∈ ℕ0 → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
248247com12 32 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
249248a2d 29 . . . . . 6 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) → (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
25055, 60, 65, 60, 95, 249nn0ind 11424 . . . . 5 (𝑑 ∈ ℕ0 → (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
251250impcom 446 . . . 4 ((𝜑𝑑 ∈ ℕ0) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
252 fveq2 6153 . . . . . . 7 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
253252breq1d 4628 . . . . . 6 (𝑓 = 𝐹 → ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) ↔ (𝐷𝐹) < ((𝐷𝐺) + 𝑑)))
254 oveq1 6617 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 (𝐺 𝑞)) = (𝐹 (𝐺 𝑞)))
255254fveq2d 6157 . . . . . . . 8 (𝑓 = 𝐹 → (𝐷‘(𝑓 (𝐺 𝑞))) = (𝐷‘(𝐹 (𝐺 𝑞))))
256255breq1d 4628 . . . . . . 7 (𝑓 = 𝐹 → ((𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
257256rexbidv 3046 . . . . . 6 (𝑓 = 𝐹 → (∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
258253, 257imbi12d 334 . . . . 5 (𝑓 = 𝐹 → (((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷𝐹) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))))
259258rspcva 3296 . . . 4 ((𝐹𝐵 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) → ((𝐷𝐹) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
26050, 251, 259syl2anc 692 . . 3 ((𝜑𝑑 ∈ ℕ0) → ((𝐷𝐹) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
261260rexlimdva 3025 . 2 (𝜑 → (∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
26249, 261mpd 15 1 (𝜑 → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908   ∪ cun 3557   ⊆ wss 3559  {csn 4153   class class class wbr 4618  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  ℂcc 9886  ℝcr 9887  0cc0 9888  1c1 9889   + caddc 9891  -∞cmnf 10024   < clt 10026   ≤ cle 10027   − cmin 10218  ℕcn 10972  ℕ0cn0 11244  ℤcz 11329  Basecbs 15792  +gcplusg 15873  .rcmulr 15874   ·𝑠 cvsca 15877  0gc0g 16032  Grpcgrp 17354  -gcsg 17356  .gcmg 17472  mulGrpcmgp 18421  1rcur 18433  Ringcrg 18479  var1cv1 19478  Poly1cpl1 19479  coe1cco1 19480   deg1 cdg1 23735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-0g 16034  df-gsum 16035  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-ghm 17590  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-subrg 18710  df-lmod 18797  df-lss 18865  df-rlreg 19215  df-psr 19288  df-mvr 19289  df-mpl 19290  df-opsr 19292  df-psr1 19482  df-vr1 19483  df-ply1 19484  df-coe1 19485  df-cnfld 19679  df-mdeg 23736  df-deg1 23737 This theorem is referenced by:  ply1divalg  23818
 Copyright terms: Public domain W3C validator