MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1mpl0 Structured version   Visualization version   GIF version

Theorem ply1mpl0 20425
Description: The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
ply1mpl0.m 𝑀 = (1o mPoly 𝑅)
ply1mpl0.p 𝑃 = (Poly1𝑅)
ply1mpl0.z 0 = (0g𝑃)
Assertion
Ref Expression
ply1mpl0 0 = (0g𝑀)

Proof of Theorem ply1mpl0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mpl0.z . 2 0 = (0g𝑃)
2 eqidd 2824 . . . 4 (⊤ → (Base‘𝑃) = (Base‘𝑃))
3 ply1mpl0.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 eqid 2823 . . . . . . 7 (PwSer1𝑅) = (PwSer1𝑅)
5 eqid 2823 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
63, 4, 5ply1bas 20365 . . . . . 6 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
7 ply1mpl0.m . . . . . . 7 𝑀 = (1o mPoly 𝑅)
87fveq2i 6675 . . . . . 6 (Base‘𝑀) = (Base‘(1o mPoly 𝑅))
96, 8eqtr4i 2849 . . . . 5 (Base‘𝑃) = (Base‘𝑀)
109a1i 11 . . . 4 (⊤ → (Base‘𝑃) = (Base‘𝑀))
11 eqid 2823 . . . . . . 7 (+g𝑃) = (+g𝑃)
123, 7, 11ply1plusg 20395 . . . . . 6 (+g𝑃) = (+g𝑀)
1312a1i 11 . . . . 5 (⊤ → (+g𝑃) = (+g𝑀))
1413oveqdr 7186 . . . 4 ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g𝑃)𝑦) = (𝑥(+g𝑀)𝑦))
152, 10, 14grpidpropd 17874 . . 3 (⊤ → (0g𝑃) = (0g𝑀))
1615mptru 1544 . 2 (0g𝑃) = (0g𝑀)
171, 16eqtri 2846 1 0 = (0g𝑀)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wtru 1538  wcel 2114  cfv 6357  (class class class)co 7158  1oc1o 8097  Basecbs 16485  +gcplusg 16567  0gc0g 16715   mPoly cmpl 20135  PwSer1cps1 20345  Poly1cpl1 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-dec 12102  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-ple 16587  df-0g 16717  df-psr 20138  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-ply1 20352
This theorem is referenced by:  coe1z  20433  ply1coe  20466  deg1z  24683  deg1nn0cl  24684  deg1ldg  24688  ply1nzb  24718
  Copyright terms: Public domain W3C validator