Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem4 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem4 41465
Description: Lemma 4 for ply1mulgsum 41466. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem4 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
Distinct variable groups:   𝐴,𝑙   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐾   𝑘,𝐿   𝑅,𝑘   ,𝑘   𝑘,𝑙   𝑘,𝑋   ,𝑘   · ,𝑘
Allowed substitution hints:   𝑃(𝑘,𝑙)   · (𝑙)   × (𝑘,𝑙)   (𝑙)   (𝑙)   𝑀(𝑘,𝑙)   𝑋(𝑙)

Proof of Theorem ply1mulgsumlem4
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6158 . . 3 (0g𝑃) ∈ V
21a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (0g𝑃) ∈ V)
3 ovex 6632 . . 3 ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ V
43a1i 11 . 2 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) ∈ V)
5 ply1mulgsum.p . . . 4 𝑃 = (Poly1𝑅)
6 ply1mulgsum.b . . . 4 𝐵 = (Base‘𝑃)
7 ply1mulgsum.a . . . 4 𝐴 = (coe1𝐾)
8 ply1mulgsum.c . . . 4 𝐶 = (coe1𝐿)
9 ply1mulgsum.x . . . 4 𝑋 = (var1𝑅)
10 ply1mulgsum.pm . . . 4 × = (.r𝑃)
11 ply1mulgsum.sm . . . 4 · = ( ·𝑠𝑃)
12 ply1mulgsum.rm . . . 4 = (.r𝑅)
13 ply1mulgsum.m . . . 4 𝑀 = (mulGrp‘𝑃)
14 ply1mulgsum.e . . . 4 = (.g𝑀)
155, 6, 7, 8, 9, 10, 11, 12, 13, 14ply1mulgsumlem2 41463 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
16 vex 3189 . . . . . . . . 9 𝑛 ∈ V
17 csbov12g 6642 . . . . . . . . . 10 (𝑛 ∈ V → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · 𝑛 / 𝑘(𝑘 𝑋)))
18 csbov2g 6644 . . . . . . . . . . . 12 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))))
19 id 22 . . . . . . . . . . . . . 14 (𝑛 ∈ V → 𝑛 ∈ V)
20 oveq2 6612 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (0...𝑘) = (0...𝑛))
21 oveq1 6611 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝑘𝑙) = (𝑛𝑙))
2221fveq2d 6152 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐶‘(𝑘𝑙)) = (𝐶‘(𝑛𝑙)))
2322oveq2d 6620 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐴𝑙) (𝐶‘(𝑘𝑙))) = ((𝐴𝑙) (𝐶‘(𝑛𝑙))))
2420, 23mpteq12dv 4693 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2524adantl 482 . . . . . . . . . . . . . 14 ((𝑛 ∈ V ∧ 𝑘 = 𝑛) → (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2619, 25csbied 3541 . . . . . . . . . . . . 13 (𝑛 ∈ V → 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))))
2726oveq2d 6620 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑅 Σg 𝑛 / 𝑘(𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
2818, 27eqtrd 2655 . . . . . . . . . . 11 (𝑛 ∈ V → 𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))))
29 csbov1g 6643 . . . . . . . . . . . 12 (𝑛 ∈ V → 𝑛 / 𝑘(𝑘 𝑋) = (𝑛 / 𝑘𝑘 𝑋))
30 csbvarg 3975 . . . . . . . . . . . . 13 (𝑛 ∈ V → 𝑛 / 𝑘𝑘 = 𝑛)
3130oveq1d 6619 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑛 / 𝑘𝑘 𝑋) = (𝑛 𝑋))
3229, 31eqtrd 2655 . . . . . . . . . . 11 (𝑛 ∈ V → 𝑛 / 𝑘(𝑘 𝑋) = (𝑛 𝑋))
3328, 32oveq12d 6622 . . . . . . . . . 10 (𝑛 ∈ V → (𝑛 / 𝑘(𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · 𝑛 / 𝑘(𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)))
3417, 33eqtrd 2655 . . . . . . . . 9 (𝑛 ∈ V → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)))
3516, 34ax-mp 5 . . . . . . . 8 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋))
36 oveq1 6611 . . . . . . . . 9 ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)) = ((0g𝑅) · (𝑛 𝑋)))
375ply1sca 19542 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
38373ad2ant1 1080 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 = (Scalar‘𝑃))
3938ad2antrr 761 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
4039fveq2d 6152 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
4140oveq1d 6619 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g𝑅) · (𝑛 𝑋)) = ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)))
425ply1lmod 19541 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
43423ad2ant1 1080 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑃 ∈ LMod)
4443ad2antrr 761 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ LMod)
455ply1ring 19537 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
4613ringmgp 18474 . . . . . . . . . . . . . . 15 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
48473ad2ant1 1080 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑀 ∈ Mnd)
4948ad2antrr 761 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
50 simpr 477 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
519, 5, 6vr1cl 19506 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑋𝐵)
52513ad2ant1 1080 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑋𝐵)
5352ad2antrr 761 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
5413, 6mgpbas 18416 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
5554, 14mulgnn0cl 17479 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → (𝑛 𝑋) ∈ 𝐵)
5649, 50, 53, 55syl3anc 1323 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ 𝐵)
57 eqid 2621 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
58 eqid 2621 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
59 eqid 2621 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
606, 57, 11, 58, 59lmod0vs 18817 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ (𝑛 𝑋) ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)) = (0g𝑃))
6144, 56, 60syl2anc 692 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) · (𝑛 𝑋)) = (0g𝑃))
6241, 61eqtrd 2655 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((0g𝑅) · (𝑛 𝑋)) = (0g𝑃))
6336, 62sylan9eqr 2677 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) · (𝑛 𝑋)) = (0g𝑃))
6435, 63syl5eq 2667 . . . . . . 7 (((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))
6564ex 450 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅) → 𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃)))
6665imim2d 57 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6766ralimdva 2956 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6867reximdva 3011 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃))))
6915, 68mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛𝑛 / 𝑘((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋)) = (0g𝑃)))
702, 4, 69mptnn0fsupp 12737 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴𝑙) (𝐶‘(𝑘𝑙))))) · (𝑘 𝑋))) finSupp (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  csb 3514   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604   finSupp cfsupp 8219  0cc0 9880   < clt 10018  cmin 10210  0cn0 11236  ...cfz 12268  Basecbs 15781  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  .gcmg 17461  mulGrpcmgp 18410  Ringcrg 18468  LModclmod 18784  var1cv1 19465  Poly1cpl1 19466  coe1cco1 19467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-tset 15881  df-ple 15882  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-subrg 18699  df-lmod 18786  df-lss 18852  df-psr 19275  df-mvr 19276  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-vr1 19470  df-ply1 19471  df-coe1 19472
This theorem is referenced by:  ply1mulgsum  41466
  Copyright terms: Public domain W3C validator