Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1sclrmsm Structured version   Visualization version   GIF version

Theorem ply1sclrmsm 41936
 Description: The ring multiplication of a polynomial with a scalar polynomial is equal to the scalar multiplication of the polynomial with the corresponding scalar. (Contributed by AV, 14-Aug-2019.)
Hypotheses
Ref Expression
ply1sclrmsm.k 𝐾 = (Base‘𝑅)
ply1sclrmsm.p 𝑃 = (Poly1𝑅)
ply1sclrmsm.b 𝐸 = (Base‘𝑃)
ply1sclrmsm.x 𝑋 = (var1𝑅)
ply1sclrmsm.s · = ( ·𝑠𝑃)
ply1sclrmsm.m × = (.r𝑃)
ply1sclrmsm.n 𝑁 = (mulGrp‘𝑃)
ply1sclrmsm.e = (.g𝑁)
ply1sclrmsm.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
ply1sclrmsm ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → ((𝐴𝐹) × 𝑍) = (𝐹 · 𝑍))

Proof of Theorem ply1sclrmsm
StepHypRef Expression
1 ply1sclrmsm.k . . . . . . . 8 𝐾 = (Base‘𝑅)
2 ply1sclrmsm.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
32ply1sca 19604 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
43fveq2d 6182 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
51, 4syl5eq 2666 . . . . . . 7 (𝑅 ∈ Ring → 𝐾 = (Base‘(Scalar‘𝑃)))
65eleq2d 2685 . . . . . 6 (𝑅 ∈ Ring → (𝐹𝐾𝐹 ∈ (Base‘(Scalar‘𝑃))))
76biimpa 501 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → 𝐹 ∈ (Base‘(Scalar‘𝑃)))
8 ply1sclrmsm.a . . . . . 6 𝐴 = (algSc‘𝑃)
9 eqid 2620 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
10 eqid 2620 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
11 ply1sclrmsm.s . . . . . 6 · = ( ·𝑠𝑃)
12 eqid 2620 . . . . . 6 (1r𝑃) = (1r𝑃)
138, 9, 10, 11, 12asclval 19316 . . . . 5 (𝐹 ∈ (Base‘(Scalar‘𝑃)) → (𝐴𝐹) = (𝐹 · (1r𝑃)))
147, 13syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐴𝐹) = (𝐹 · (1r𝑃)))
15143adant3 1079 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → (𝐴𝐹) = (𝐹 · (1r𝑃)))
1615oveq1d 6650 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → ((𝐴𝐹) × 𝑍) = ((𝐹 · (1r𝑃)) × 𝑍))
17 simp1 1059 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → 𝑅 ∈ Ring)
181eleq2i 2691 . . . . 5 (𝐹𝐾𝐹 ∈ (Base‘𝑅))
1918biimpi 206 . . . 4 (𝐹𝐾𝐹 ∈ (Base‘𝑅))
20193ad2ant2 1081 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → 𝐹 ∈ (Base‘𝑅))
212ply1ring 19599 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 ply1sclrmsm.b . . . . . 6 𝐸 = (Base‘𝑃)
2322, 12ringidcl 18549 . . . . 5 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐸)
2421, 23syl 17 . . . 4 (𝑅 ∈ Ring → (1r𝑃) ∈ 𝐸)
25243ad2ant1 1080 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → (1r𝑃) ∈ 𝐸)
26 simp3 1061 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → 𝑍𝐸)
27 ply1sclrmsm.m . . . 4 × = (.r𝑃)
28 eqid 2620 . . . 4 (Base‘𝑅) = (Base‘𝑅)
292, 27, 22, 28, 11ply1ass23l 41935 . . 3 ((𝑅 ∈ Ring ∧ (𝐹 ∈ (Base‘𝑅) ∧ (1r𝑃) ∈ 𝐸𝑍𝐸)) → ((𝐹 · (1r𝑃)) × 𝑍) = (𝐹 · ((1r𝑃) × 𝑍)))
3017, 20, 25, 26, 29syl13anc 1326 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → ((𝐹 · (1r𝑃)) × 𝑍) = (𝐹 · ((1r𝑃) × 𝑍)))
3122, 27, 12ringlidm 18552 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑍𝐸) → ((1r𝑃) × 𝑍) = 𝑍)
3221, 31sylan 488 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐸) → ((1r𝑃) × 𝑍) = 𝑍)
33323adant2 1078 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → ((1r𝑃) × 𝑍) = 𝑍)
3433oveq2d 6651 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → (𝐹 · ((1r𝑃) × 𝑍)) = (𝐹 · 𝑍))
3516, 30, 343eqtrd 2658 1 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸) → ((𝐴𝐹) × 𝑍) = (𝐹 · 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988  ‘cfv 5876  (class class class)co 6635  Basecbs 15838  .rcmulr 15923  Scalarcsca 15925   ·𝑠 cvsca 15926  .gcmg 17521  mulGrpcmgp 18470  1rcur 18482  Ringcrg 18528  algSccascl 19292  var1cv1 19527  Poly1cpl1 19528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-ofr 6883  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-fzo 12450  df-seq 12785  df-hash 13101  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-tset 15941  df-ple 15942  df-0g 16083  df-gsum 16084  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-submnd 17317  df-grp 17406  df-minusg 17407  df-mulg 17522  df-subg 17572  df-ghm 17639  df-cntz 17731  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-subrg 18759  df-ascl 19295  df-psr 19337  df-mpl 19339  df-opsr 19341  df-psr1 19531  df-ply1 19533 This theorem is referenced by:  coe1sclmulval  41938
 Copyright terms: Public domain W3C validator