MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivalg Structured version   Visualization version   GIF version

Theorem plydivalg 23775
Description: The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
Assertion
Ref Expression
plydivalg (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦   𝜑,𝑞
Allowed substitution hint:   𝑅(𝑞)

Proof of Theorem plydivalg
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 plydiv.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 plydiv.tm . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
3 plydiv.rc . . 3 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
4 plydiv.m1 . . 3 (𝜑 → -1 ∈ 𝑆)
5 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
6 plydiv.g . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
7 plydiv.z . . 3 (𝜑𝐺 ≠ 0𝑝)
8 plydiv.r . . 3 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
91, 2, 3, 4, 5, 6, 7, 8plydivex 23773 . 2 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
10 simpll 785 . . . . . 6 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → 𝜑)
1110, 1sylan 486 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1210, 2sylan 486 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
1310, 3sylan 486 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
1410, 4syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → -1 ∈ 𝑆)
1510, 5syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → 𝐹 ∈ (Poly‘𝑆))
1610, 6syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → 𝐺 ∈ (Poly‘𝑆))
1710, 7syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → 𝐺 ≠ 0𝑝)
18 eqid 2609 . . . . 5 (𝐹𝑓 − (𝐺𝑓 · 𝑝)) = (𝐹𝑓 − (𝐺𝑓 · 𝑝))
19 simplrr 796 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → 𝑝 ∈ (Poly‘𝑆))
20 simprr 791 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))
21 simplrl 795 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → 𝑞 ∈ (Poly‘𝑆))
22 simprl 789 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
2311, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22plydiveu 23774 . . . 4 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))) → 𝑞 = 𝑝)
2423ex 448 . . 3 ((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) → (((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
2524ralrimivva 2953 . 2 (𝜑 → ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
26 oveq2 6535 . . . . . . 7 (𝑞 = 𝑝 → (𝐺𝑓 · 𝑞) = (𝐺𝑓 · 𝑝))
2726oveq2d 6543 . . . . . 6 (𝑞 = 𝑝 → (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑝)))
288, 27syl5eq 2655 . . . . 5 (𝑞 = 𝑝𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑝)))
2928eqeq1d 2611 . . . 4 (𝑞 = 𝑝 → (𝑅 = 0𝑝 ↔ (𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝))
3028fveq2d 6092 . . . . 5 (𝑞 = 𝑝 → (deg‘𝑅) = (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))))
3130breq1d 4587 . . . 4 (𝑞 = 𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))
3229, 31orbi12d 741 . . 3 (𝑞 = 𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺))))
3332reu4 3366 . 2 (∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ (∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)))
349, 25, 33sylanbrc 694 1 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  ∃!wreu 2897   class class class wbr 4577  cfv 5790  (class class class)co 6527  𝑓 cof 6770  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cmin 10117  -cneg 10118   / cdiv 10533  0𝑝c0p 23159  Polycply 23661  degcdgr 23664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-0p 23160  df-ply 23665  df-coe 23667  df-dgr 23668
This theorem is referenced by:  quotlem  23776
  Copyright terms: Public domain W3C validator