MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyf Structured version   Visualization version   GIF version

Theorem plyf 23702
Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyf (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)

Proof of Theorem plyf
Dummy variables 𝑘 𝑎 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 23699 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 478 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
3 fzfid 12591 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin)
4 plybss 23698 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
5 0cnd 9889 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℂ)
65snssd 4280 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → {0} ⊆ ℂ)
74, 6unssd 3750 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆ ℂ)
87ad2antrr 757 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ)
98adantr 479 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆ ℂ)
10 simplrr 796 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
11 cnex 9873 . . . . . . . . . . . 12 ℂ ∈ V
12 ssexg 4726 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
138, 11, 12sylancl 692 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 11147 . . . . . . . . . . 11 0 ∈ V
15 elmapg 7734 . . . . . . . . . . 11 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 692 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1710, 16mpbid 220 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
18 elfznn0 12259 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
19 ffvelrn 6249 . . . . . . . . 9 ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
2017, 18, 19syl2an 492 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
219, 20sseldd 3568 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
22 simpr 475 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 expcl 12697 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
2422, 18, 23syl2an 492 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧𝑘) ∈ ℂ)
2521, 24mulcld 9916 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
263, 25fsumcl 14259 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
27 eqid 2609 . . . . 5 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
2826, 27fmptd 6276 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))):ℂ⟶ℂ)
29 feq1 5924 . . . 4 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))):ℂ⟶ℂ))
3028, 29syl5ibrcom 235 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹:ℂ⟶ℂ))
3130rexlimdvva 3019 . 2 (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹:ℂ⟶ℂ))
322, 31mpd 15 1 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wrex 2896  Vcvv 3172  cun 3537  wss 3539  {csn 4124  cmpt 4637  wf 5785  cfv 5789  (class class class)co 6526  𝑚 cmap 7721  cc 9790  0cc0 9792   · cmul 9797  0cn0 11141  ...cfz 12154  cexp 12679  Σcsu 14212  Polycply 23688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-fz 12155  df-fzo 12292  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-clim 14015  df-sum 14213  df-ply 23692
This theorem is referenced by:  plysub  23723  plyco  23745  0dgrb  23750  coe0  23760  coesub  23761  dgrsub  23776  dgrcolem1  23777  dgrcolem2  23778  dgrco  23779  plymul0or  23784  plyreres  23786  dvply2g  23788  dvnply2  23790  plycpn  23792  plydivlem3  23798  plydivlem4  23799  plydiveu  23801  plyremlem  23807  plyrem  23808  facth  23809  fta1lem  23810  fta1  23811  quotcan  23812  vieta1lem1  23813  vieta1lem2  23814  vieta1  23815  plyexmo  23816  elaa  23819  elqaalem3  23824  aannenlem1  23831  aalioulem2  23836  aalioulem3  23837  aalioulem4  23838  taylthlem2  23876  ftalem2  24544  ftalem3  24545  ftalem4  24546  ftalem5  24547  ftalem7  24549  basellem4  24554  basellem5  24555  plymul02  29742  plymulx0  29743  signsplypnf  29746  signsply0  29747  mpaaeu  36522  rngunsnply  36545
  Copyright terms: Public domain W3C validator