MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymullem Structured version   Visualization version   GIF version

Theorem plymullem 23690
Description: Lemma for plymul 23692. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyadd.m (𝜑𝑀 ∈ ℕ0)
plyadd.n (𝜑𝑁 ∈ ℕ0)
plyadd.a (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyadd.b (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyadd.a2 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
plyadd.b2 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
plyadd.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
plyadd.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
plymul.x ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plymullem (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐵   𝑥,𝐹,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem plymullem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plyadd.2 . . . 4 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plyadd.m . . . 4 (𝜑𝑀 ∈ ℕ0)
4 plyadd.n . . . 4 (𝜑𝑁 ∈ ℕ0)
5 plyadd.a . . . . . 6 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
6 plybss 23668 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
71, 6syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
8 0cnd 9886 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
98snssd 4277 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 3747 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 9870 . . . . . . . 8 ℂ ∈ V
12 ssexg 4724 . . . . . . . 8 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 692 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 11142 . . . . . . 7 0 ∈ V
15 elmapg 7731 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 692 . . . . . 6 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 220 . . . . 5 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 5953 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
19 plyadd.b . . . . . 6 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
20 elmapg 7731 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2113, 14, 20sylancl 692 . . . . . 6 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2219, 21mpbid 220 . . . . 5 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
2322, 10fssd 5953 . . . 4 (𝜑𝐵:ℕ0⟶ℂ)
24 plyadd.a2 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
25 plyadd.b2 . . . 4 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyadd.f . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
27 plyadd.g . . . 4 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
281, 2, 3, 4, 18, 23, 24, 25, 26, 27plymullem1 23688 . . 3 (𝜑 → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))))
293, 4nn0addcld 11199 . . . 4 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
30 eqid 2606 . . . . . . 7 (𝑆 ∪ {0}) = (𝑆 ∪ {0})
31 plyadd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
327, 30, 31un0addcl 11170 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0}))
33 fzfid 12586 . . . . . 6 (𝜑 → (0...𝑛) ∈ Fin)
34 elfznn0 12254 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
35 ffvelrn 6247 . . . . . . . . 9 ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
3617, 34, 35syl2an 492 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
37 fznn0sub 12196 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
38 ffvelrn 6247 . . . . . . . . 9 ((𝐵:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑛𝑘) ∈ ℕ0) → (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))
3922, 37, 38syl2an 492 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))
4036, 39jca 552 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0})))
41 plymul.x . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
427, 30, 41un0mulcl 11171 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 · 𝑦) ∈ (𝑆 ∪ {0}))
4342caovclg 6698 . . . . . . 7 ((𝜑 ∧ ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
4440, 43syldan 485 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
45 ssun2 3735 . . . . . . . 8 {0} ⊆ (𝑆 ∪ {0})
46 c0ex 9887 . . . . . . . . 9 0 ∈ V
4746snss 4255 . . . . . . . 8 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
4845, 47mpbir 219 . . . . . . 7 0 ∈ (𝑆 ∪ {0})
4948a1i 11 . . . . . 6 (𝜑 → 0 ∈ (𝑆 ∪ {0}))
5010, 32, 33, 44, 49fsumcllem 14253 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
5150adantr 479 . . . 4 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
5210, 29, 51elplyd 23676 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))) ∈ (Poly‘(𝑆 ∪ {0})))
5328, 52eqeltrd 2684 . 2 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘(𝑆 ∪ {0})))
54 plyun0 23671 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
5553, 54syl6eleq 2694 1 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  Vcvv 3169  cun 3534  wss 3536  {csn 4121  cmpt 4634  cima 5028  wf 5783  cfv 5787  (class class class)co 6524  𝑓 cof 6767  𝑚 cmap 7718  cc 9787  0cc0 9789  1c1 9790   + caddc 9792   · cmul 9794  cmin 10114  0cn0 11136  cuz 11516  ...cfz 12149  cexp 12674  Σcsu 14207  Polycply 23658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-sup 8205  df-oi 8272  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-n0 11137  df-z 11208  df-uz 11517  df-rp 11662  df-fz 12150  df-fzo 12287  df-seq 12616  df-exp 12675  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-clim 14010  df-sum 14208  df-ply 23662
This theorem is referenced by:  plymul  23692
  Copyright terms: Public domain W3C validator