![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyrecj | Structured version Visualization version GIF version |
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
plyrecj | ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 12812 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin) | |
2 | 0re 10078 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
3 | eqid 2651 | . . . . . . . . . 10 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
4 | 3 | coef2 24032 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ) |
5 | 2, 4 | mpan2 707 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘ℝ) → (coeff‘𝐹):ℕ0⟶ℝ) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (coeff‘𝐹):ℕ0⟶ℝ) |
7 | elfznn0 12471 | . . . . . . 7 ⊢ (𝑥 ∈ (0...(deg‘𝐹)) → 𝑥 ∈ ℕ0) | |
8 | ffvelrn 6397 | . . . . . . 7 ⊢ (((coeff‘𝐹):ℕ0⟶ℝ ∧ 𝑥 ∈ ℕ0) → ((coeff‘𝐹)‘𝑥) ∈ ℝ) | |
9 | 6, 7, 8 | syl2an 493 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℝ) |
10 | 9 | recnd 10106 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℂ) |
11 | simpr 476 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) | |
12 | expcl 12918 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴↑𝑥) ∈ ℂ) | |
13 | 11, 7, 12 | syl2an 493 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (𝐴↑𝑥) ∈ ℂ) |
14 | 10, 13 | mulcld 10098 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)) ∈ ℂ) |
15 | 1, 14 | fsumcj 14586 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)))) |
16 | 10, 13 | cjmuld 14005 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴↑𝑥)))) |
17 | 9 | cjred 14010 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘((coeff‘𝐹)‘𝑥)) = ((coeff‘𝐹)‘𝑥)) |
18 | cjexp 13934 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (∗‘(𝐴↑𝑥)) = ((∗‘𝐴)↑𝑥)) | |
19 | 11, 7, 18 | syl2an 493 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(𝐴↑𝑥)) = ((∗‘𝐴)↑𝑥)) |
20 | 17, 19 | oveq12d 6708 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴↑𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
21 | 16, 20 | eqtrd 2685 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
22 | 21 | sumeq2dv 14477 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
23 | 15, 22 | eqtrd 2685 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
24 | eqid 2651 | . . . 4 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
25 | 3, 24 | coeid2 24040 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹‘𝐴) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) |
26 | 25 | fveq2d 6233 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)))) |
27 | cjcl 13889 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
28 | 3, 24 | coeid2 24040 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ (∗‘𝐴) ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
29 | 27, 28 | sylan2 490 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
30 | 23, 26, 29 | 3eqtr4d 2695 | 1 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 · cmul 9979 ℕ0cn0 11330 ...cfz 12364 ↑cexp 12900 ∗ccj 13880 Σcsu 14460 Polycply 23985 coeffccoe 23987 degcdgr 23988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-0p 23482 df-ply 23989 df-coe 23991 df-dgr 23992 |
This theorem is referenced by: plyreres 24083 aacjcl 24127 |
Copyright terms: Public domain | W3C validator |