MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyremlem Structured version   Visualization version   GIF version

Theorem plyremlem 24895
Description: Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
plyrem.1 𝐺 = (Xpf − (ℂ × {𝐴}))
Assertion
Ref Expression
plyremlem (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))

Proof of Theorem plyremlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plyrem.1 . . 3 𝐺 = (Xpf − (ℂ × {𝐴}))
2 ssid 3991 . . . . 5 ℂ ⊆ ℂ
3 ax-1cn 10597 . . . . 5 1 ∈ ℂ
4 plyid 24801 . . . . 5 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
52, 3, 4mp2an 690 . . . 4 Xp ∈ (Poly‘ℂ)
6 plyconst 24798 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
72, 6mpan 688 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
8 plysubcl 24814 . . . 4 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
95, 7, 8sylancr 589 . . 3 (𝐴 ∈ ℂ → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
101, 9eqeltrid 2919 . 2 (𝐴 ∈ ℂ → 𝐺 ∈ (Poly‘ℂ))
11 negcl 10888 . . . . . . . . 9 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
12 addcom 10828 . . . . . . . . 9 ((-𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
1311, 12sylan 582 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
14 negsub 10936 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1514ancoms 461 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1613, 15eqtrd 2858 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧𝐴))
1716mpteq2dva 5163 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
18 cnex 10620 . . . . . . . 8 ℂ ∈ V
1918a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ∈ V)
20 negex 10886 . . . . . . . 8 -𝐴 ∈ V
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → -𝐴 ∈ V)
22 simpr 487 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 fconstmpt 5616 . . . . . . . 8 (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴)
2423a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴))
25 df-idp 24781 . . . . . . . . 9 Xp = ( I ↾ ℂ)
26 mptresid 5920 . . . . . . . . 9 ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧)
2725, 26eqtri 2846 . . . . . . . 8 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
2827a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → Xp = (𝑧 ∈ ℂ ↦ 𝑧))
2919, 21, 22, 24, 28offval2 7428 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)))
30 simpl 485 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
31 fconstmpt 5616 . . . . . . . 8 (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)
3231a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴))
3319, 22, 30, 28, 32offval2 7428 . . . . . 6 (𝐴 ∈ ℂ → (Xpf − (ℂ × {𝐴})) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
3417, 29, 333eqtr4d 2868 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = (Xpf − (ℂ × {𝐴})))
3534, 1syl6eqr 2876 . . . 4 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = 𝐺)
3635fveq2d 6676 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = (deg‘𝐺))
37 plyconst 24798 . . . . 5 ((ℂ ⊆ ℂ ∧ -𝐴 ∈ ℂ) → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
382, 11, 37sylancr 589 . . . 4 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
395a1i 11 . . . 4 (𝐴 ∈ ℂ → Xp ∈ (Poly‘ℂ))
40 0dgr 24837 . . . . . 6 (-𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
4111, 40syl 17 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
42 0lt1 11164 . . . . 5 0 < 1
4341, 42eqbrtrdi 5107 . . . 4 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) < 1)
44 eqid 2823 . . . . 5 (deg‘(ℂ × {-𝐴})) = (deg‘(ℂ × {-𝐴}))
45 dgrid 24856 . . . . . 6 (deg‘Xp) = 1
4645eqcomi 2832 . . . . 5 1 = (deg‘Xp)
4744, 46dgradd2 24860 . . . 4 (((ℂ × {-𝐴}) ∈ (Poly‘ℂ) ∧ Xp ∈ (Poly‘ℂ) ∧ (deg‘(ℂ × {-𝐴})) < 1) → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = 1)
4838, 39, 43, 47syl3anc 1367 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = 1)
4936, 48eqtr3d 2860 . 2 (𝐴 ∈ ℂ → (deg‘𝐺) = 1)
501, 33syl5eq 2870 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐺 = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
5150fveq1d 6674 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
5251adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
53 ovex 7191 . . . . . . . . . 10 (𝑧𝐴) ∈ V
54 eqid 2823 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ (𝑧𝐴)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴))
5554fvmpt2 6781 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝑧𝐴) ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5622, 53, 55sylancl 588 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5752, 56eqtrd 2858 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = (𝑧𝐴))
5857eqeq1d 2825 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ (𝑧𝐴) = 0))
59 subeq0 10914 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6059ancoms 461 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6158, 60bitrd 281 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ 𝑧 = 𝐴))
6261pm5.32da 581 . . . . 5 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0) ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
63 plyf 24790 . . . . . 6 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
64 ffn 6516 . . . . . 6 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
65 fniniseg 6832 . . . . . 6 (𝐺 Fn ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
6610, 63, 64, 654syl 19 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
67 eleq1a 2910 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 = 𝐴𝑧 ∈ ℂ))
6867pm4.71rd 565 . . . . 5 (𝐴 ∈ ℂ → (𝑧 = 𝐴 ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
6962, 66, 683bitr4d 313 . . . 4 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 = 𝐴))
70 velsn 4585 . . . 4 (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴)
7169, 70syl6bbr 291 . . 3 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 ∈ {𝐴}))
7271eqrdv 2821 . 2 (𝐴 ∈ ℂ → (𝐺 “ {0}) = {𝐴})
7310, 49, 723jca 1124 1 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  {csn 4569   class class class wbr 5068  cmpt 5148   I cid 5461   × cxp 5555  ccnv 5556  cres 5559  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cmin 10872  -cneg 10873  Polycply 24776  Xpcidp 24777  degcdgr 24779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-0p 24273  df-ply 24780  df-idp 24781  df-coe 24782  df-dgr 24783
This theorem is referenced by:  plyrem  24896  facth  24897  fta1lem  24898  vieta1lem1  24901  vieta1lem2  24902  taylply2  24958  ftalem7  25658
  Copyright terms: Public domain W3C validator