MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyreres Structured version   Visualization version   GIF version

Theorem plyreres 23786
Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
plyreres (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ)

Proof of Theorem plyreres
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 plybss 23698 . . 3 (𝐹 ∈ (Poly‘ℝ) → ℝ ⊆ ℂ)
2 plyf 23702 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
3 ffn 5943 . . . 4 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
4 fnssresb 5902 . . . 4 (𝐹 Fn ℂ → ((𝐹 ↾ ℝ) Fn ℝ ↔ ℝ ⊆ ℂ))
52, 3, 43syl 18 . . 3 (𝐹 ∈ (Poly‘ℝ) → ((𝐹 ↾ ℝ) Fn ℝ ↔ ℝ ⊆ ℂ))
61, 5mpbird 245 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ) Fn ℝ)
7 fvres 6101 . . . . . 6 (𝑎 ∈ ℝ → ((𝐹 ↾ ℝ)‘𝑎) = (𝐹𝑎))
87adantl 480 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → ((𝐹 ↾ ℝ)‘𝑎) = (𝐹𝑎))
9 recn 9882 . . . . . . 7 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
10 ffvelrn 6249 . . . . . . 7 ((𝐹:ℂ⟶ℂ ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) ∈ ℂ)
112, 9, 10syl2an 492 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹𝑎) ∈ ℂ)
12 plyrecj 23783 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℂ) → (∗‘(𝐹𝑎)) = (𝐹‘(∗‘𝑎)))
139, 12sylan2 489 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘(𝐹𝑎)) = (𝐹‘(∗‘𝑎)))
14 cjre 13675 . . . . . . . . 9 (𝑎 ∈ ℝ → (∗‘𝑎) = 𝑎)
1514adantl 480 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘𝑎) = 𝑎)
1615fveq2d 6091 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘(∗‘𝑎)) = (𝐹𝑎))
1713, 16eqtrd 2643 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘(𝐹𝑎)) = (𝐹𝑎))
1811, 17cjrebd 13738 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹𝑎) ∈ ℝ)
198, 18eqeltrd 2687 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ)
2019ralrimiva 2948 . . 3 (𝐹 ∈ (Poly‘ℝ) → ∀𝑎 ∈ ℝ ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ)
21 fnfvrnss 6281 . . 3 (((𝐹 ↾ ℝ) Fn ℝ ∧ ∀𝑎 ∈ ℝ ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) → ran (𝐹 ↾ ℝ) ⊆ ℝ)
226, 20, 21syl2anc 690 . 2 (𝐹 ∈ (Poly‘ℝ) → ran (𝐹 ↾ ℝ) ⊆ ℝ)
23 df-f 5793 . 2 ((𝐹 ↾ ℝ):ℝ⟶ℝ ↔ ((𝐹 ↾ ℝ) Fn ℝ ∧ ran (𝐹 ↾ ℝ) ⊆ ℝ))
246, 22, 23sylanbrc 694 1 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  wss 3539  ran crn 5028  cres 5029   Fn wfn 5784  wf 5785  cfv 5789  cc 9790  cr 9791  ccj 13632  Polycply 23688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-fz 12155  df-fzo 12292  df-fl 12412  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-clim 14015  df-rlim 14016  df-sum 14213  df-0p 23187  df-ply 23692  df-coe 23694  df-dgr 23695
This theorem is referenced by:  aalioulem3  23837  taylthlem2  23876  plyrecld  29745
  Copyright terms: Public domain W3C validator