MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.2 Structured version   Visualization version   GIF version

Theorem pm1.2 535
Description: Axiom *1.2 of [WhiteheadRussell] p. 96, which they call "Taut". (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.2 ((𝜑𝜑) → 𝜑)

Proof of Theorem pm1.2
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21, 1jaoi 394 1 ((𝜑𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  oridm  536  rb-ax4  1677  sotrieq  5024  swoer  7720  bj-peirce  32206  paddidm  34628
  Copyright terms: Public domain W3C validator