Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.123b Structured version   Visualization version   GIF version

Theorem pm14.123b 40764
Description: Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
Assertion
Ref Expression
pm14.123b ((𝐴𝑉𝐵𝑊) → ((∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ ∃𝑧𝑤𝜑)))
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑉(𝑧,𝑤)   𝑊(𝑧,𝑤)

Proof of Theorem pm14.123b
StepHypRef Expression
1 2sbc5g 40754 . . . 4 ((𝐴𝑉𝐵𝑊) → (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
21adantr 483 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵))) → (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
3 nfa1 2154 . . . . 5 𝑧𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵))
4 nfa2 2175 . . . . . 6 𝑤𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵))
5 simpr 487 . . . . . . 7 (((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) → 𝜑)
6 2sp 2184 . . . . . . . 8 (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) → (𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)))
76ancrd 554 . . . . . . 7 (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) → (𝜑 → ((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑)))
85, 7impbid2 228 . . . . . 6 (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) → (((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ 𝜑))
94, 8exbid 2224 . . . . 5 (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) → (∃𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ ∃𝑤𝜑))
103, 9exbid 2224 . . . 4 (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) → (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ ∃𝑧𝑤𝜑))
1110adantl 484 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵))) → (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ ∃𝑧𝑤𝜑))
122, 11bitr3d 283 . 2 (((𝐴𝑉𝐵𝑊) ∧ ∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵))) → ([𝐴 / 𝑧][𝐵 / 𝑤]𝜑 ↔ ∃𝑧𝑤𝜑))
1312pm5.32da 581 1 ((𝐴𝑉𝐵𝑊) → ((∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ ∃𝑧𝑤𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1534   = wceq 1536  wex 1779  wcel 2113  [wsbc 3775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3499  df-sbc 3776
This theorem is referenced by:  pm14.123c  40765
  Copyright terms: Public domain W3C validator