MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.21ddne Structured version   Visualization version   GIF version

Theorem pm2.21ddne 2865
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
pm2.21ddne.1 (𝜑𝐴 = 𝐵)
pm2.21ddne.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
pm2.21ddne (𝜑𝜓)

Proof of Theorem pm2.21ddne
StepHypRef Expression
1 pm2.21ddne.1 . 2 (𝜑𝐴 = 𝐵)
2 pm2.21ddne.2 . . 3 (𝜑𝐴𝐵)
32neneqd 2786 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
41, 3pm2.21dd 184 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wne 2779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-ne 2781
This theorem is referenced by:  cshwshashlem2  15587  dprdsn  18204  coseq00topi  23975  tglndim0  25242  ncolncol  25259  footne  25333  sgnsub  29739  sgnmulsgn  29744  sgnmulsgp  29745  pconcon  30273  osumcllem11N  34073  dochexmidlem8  35577  fnchoice  38014
  Copyright terms: Public domain W3C validator