MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.24ii Structured version   Visualization version   GIF version

Theorem pm2.24ii 117
Description: A contradiction implies anything. Inference associated with pm2.21i 116 and pm2.24i 146. (Contributed by NM, 27-Feb-2008.)
Hypotheses
Ref Expression
pm2.24ii.1 𝜑
pm2.24ii.2 ¬ 𝜑
Assertion
Ref Expression
pm2.24ii 𝜓

Proof of Theorem pm2.24ii
StepHypRef Expression
1 pm2.24ii.1 . 2 𝜑
2 pm2.24ii.2 . . 3 ¬ 𝜑
32pm2.21i 116 . 2 (𝜑𝜓)
41, 3ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-3 8
This theorem is referenced by:  dtrucor2  4862  bj-babygodel  32227  bj-dtrucor2v  32441
  Copyright terms: Public domain W3C validator