MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.25 Structured version   Visualization version   GIF version

Theorem pm2.25 417
Description: Theorem *2.25 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.25 (𝜑 ∨ ((𝜑𝜓) → 𝜓))

Proof of Theorem pm2.25
StepHypRef Expression
1 orel1 395 . 2 𝜑 → ((𝜑𝜓) → 𝜓))
21orri 389 1 (𝜑 ∨ ((𝜑𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-or 383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator