MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.38 Structured version   Visualization version   GIF version

Theorem pm2.38 923
Description: Theorem *2.38 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
Assertion
Ref Expression
pm2.38 ((𝜓𝜒) → ((𝜓𝜑) → (𝜒𝜑)))

Proof of Theorem pm2.38
StepHypRef Expression
1 id 22 . 2 ((𝜓𝜒) → (𝜓𝜒))
21orim1d 920 1 ((𝜓𝜒) → ((𝜓𝜑) → (𝜒𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385
This theorem is referenced by:  pm2.36  924  pm2.37  925
  Copyright terms: Public domain W3C validator