MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.47 Structured version   Visualization version   GIF version

Theorem pm2.47 414
Description: Theorem *2.47 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.47 (¬ (𝜑𝜓) → (¬ 𝜑𝜓))

Proof of Theorem pm2.47
StepHypRef Expression
1 pm2.45 412 . 2 (¬ (𝜑𝜓) → ¬ 𝜑)
21orcd 407 1 (¬ (𝜑𝜓) → (¬ 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator