MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.67-2 Structured version   Visualization version   GIF version

Theorem pm2.67-2 417
Description: Slight generalization of Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.67-2 (((𝜑𝜒) → 𝜓) → (𝜑𝜓))

Proof of Theorem pm2.67-2
StepHypRef Expression
1 orc 400 . 2 (𝜑 → (𝜑𝜒))
21imim1i 63 1 (((𝜑𝜒) → 𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  pm2.67  418  jaob  821
  Copyright terms: Public domain W3C validator