MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.75 Structured version   Visualization version   GIF version

Theorem pm2.75 889
Description: Theorem *2.75 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 4-Jan-2013.)
Assertion
Ref Expression
pm2.75 ((𝜑𝜓) → ((𝜑 ∨ (𝜓𝜒)) → (𝜑𝜒)))

Proof of Theorem pm2.75
StepHypRef Expression
1 pm2.76 888 . 2 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
21com12 32 1 ((𝜑𝜓) → ((𝜑 ∨ (𝜓𝜒)) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-or 383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator