MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpf1 Structured version   Visualization version   GIF version

Theorem pm2mpf1 21409
Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpcl.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
pm2mpf1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)

Proof of Theorem pm2mpf1
Dummy variables 𝑛 𝑘 𝑎 𝑏 𝑖 𝑗 𝑢 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . 3 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . 3 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . 3 = ( ·𝑠𝑄)
5 pm2mpval.e . . 3 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . 3 𝑋 = (var1𝐴)
7 pm2mpval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . 3 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
10 pm2mpcl.l . . 3 𝐿 = (Base‘𝑄)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpf 21408 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
127matring 21054 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1312adantr 483 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝐴 ∈ Ring)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpcl 21407 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑇𝑢) ∈ 𝐿)
15143expa 1114 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑢𝐵) → (𝑇𝑢) ∈ 𝐿)
1615adantrr 715 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑢) ∈ 𝐿)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpcl 21407 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤𝐵) → (𝑇𝑤) ∈ 𝐿)
18173expia 1117 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑤𝐵 → (𝑇𝑤) ∈ 𝐿))
1918adantld 493 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑢𝐵𝑤𝐵) → (𝑇𝑤) ∈ 𝐿))
2019imp 409 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑤) ∈ 𝐿)
21 eqid 2823 . . . . . . 7 (coe1‘(𝑇𝑢)) = (coe1‘(𝑇𝑢))
22 eqid 2823 . . . . . . 7 (coe1‘(𝑇𝑤)) = (coe1‘(𝑇𝑤))
238, 10, 21, 22ply1coe1eq 20468 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑇𝑢) ∈ 𝐿 ∧ (𝑇𝑤) ∈ 𝐿) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) ↔ (𝑇𝑢) = (𝑇𝑤)))
2423bicomd 225 . . . . 5 ((𝐴 ∈ Ring ∧ (𝑇𝑢) ∈ 𝐿 ∧ (𝑇𝑤) ∈ 𝐿) → ((𝑇𝑢) = (𝑇𝑤) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)))
2513, 16, 20, 24syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((𝑇𝑢) = (𝑇𝑤) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)))
26 simpll 765 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑁 ∈ Fin)
27 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑅 ∈ Ring)
28 simprl 769 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑢𝐵)
291, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 21406 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3026, 27, 28, 29syl3anc 1367 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3130ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3231fveq2d 6676 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝑇𝑢)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋))))))
3332fveq1d 6674 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
34 simplll 773 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3528adantr 483 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢𝐵)
3635anim1i 616 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑢𝐵𝑛 ∈ ℕ0))
371, 2, 3, 4, 5, 6, 7, 8pm2mpf1lem 21404 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑛 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛))
3834, 36, 37syl2anc 586 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛))
3933, 38eqtrd 2858 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑢))‘𝑛) = (𝑢 decompPMat 𝑛))
40 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑤𝐵)
411, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 21406 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤𝐵) → (𝑇𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))
4226, 27, 40, 41syl3anc 1367 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))
4342fveq2d 6676 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (coe1‘(𝑇𝑤)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋))))))
4443fveq1d 6674 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((coe1‘(𝑇𝑤))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
4544ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑤))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
4640adantr 483 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤𝐵)
4746anim1i 616 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑤𝐵𝑛 ∈ ℕ0))
481, 2, 3, 4, 5, 6, 7, 8pm2mpf1lem 21404 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑤𝐵𝑛 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛))
4934, 47, 48syl2anc 586 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛))
5045, 49eqtrd 2858 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑤))‘𝑛) = (𝑤 decompPMat 𝑛))
5139, 50eqeq12d 2839 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) ↔ (𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛)))
522, 3decpmatval 21375 . . . . . . . . . . . . . . . . 17 ((𝑢𝐵𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
5328, 52sylan 582 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
542, 3decpmatval 21375 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
5540, 54sylan 582 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
5653, 55eqeq12d 2839 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))))
57 eqid 2823 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
58 eqid 2823 . . . . . . . . . . . . . . . . 17 (Base‘𝐴) = (Base‘𝐴)
59 simplll 773 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
60 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
61 eqid 2823 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
62 simp2 1133 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
63 simp3 1134 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
643eleq2i 2906 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢𝐵𝑢 ∈ (Base‘𝐶))
6564biimpi 218 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢𝐵𝑢 ∈ (Base‘𝐶))
6665adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢𝐵𝑤𝐵) → 𝑢 ∈ (Base‘𝐶))
6766ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑢 ∈ (Base‘𝐶))
68673ad2ant1 1129 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑢 ∈ (Base‘𝐶))
6968, 3eleqtrrdi 2926 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑢𝐵)
702, 61, 3, 62, 63, 69matecld 21037 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑢𝑗) ∈ (Base‘𝑃))
71 simp1r 1194 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑛 ∈ ℕ0)
72 eqid 2823 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑖𝑢𝑗))
7372, 61, 1, 57coe1fvalcl 20382 . . . . . . . . . . . . . . . . . 18 (((𝑖𝑢𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅))
7470, 71, 73syl2anc 586 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅))
757, 57, 58, 59, 60, 74matbas2d 21034 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴))
763eleq2i 2906 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤𝐵𝑤 ∈ (Base‘𝐶))
7776biimpi 218 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ (Base‘𝐶))
7877ad2antll 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑤 ∈ (Base‘𝐶))
7978adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑤 ∈ (Base‘𝐶))
80793ad2ant1 1129 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑤 ∈ (Base‘𝐶))
8180, 3eleqtrrdi 2926 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑤𝐵)
822, 61, 3, 62, 63, 81matecld 21037 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑤𝑗) ∈ (Base‘𝑃))
83 eqid 2823 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑖𝑤𝑗))
8483, 61, 1, 57coe1fvalcl 20382 . . . . . . . . . . . . . . . . . 18 (((𝑖𝑤𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅))
8582, 71, 84syl2anc 586 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅))
867, 57, 58, 59, 60, 85matbas2d 21034 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴))
877, 58eqmat 21035 . . . . . . . . . . . . . . . 16 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
8875, 86, 87syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
8956, 88bitrd 281 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
9089adantlr 713 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
91 oveq1 7165 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦))
92 oveq1 7165 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))
9391, 92eqeq12d 2839 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
94 oveq2 7166 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏))
95 oveq2 7166 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))
9694, 95eqeq12d 2839 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏)))
9793, 96rspc2va 3636 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑁𝑏𝑁) ∧ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))
98 eqidd 2824 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
99 oveq12 7167 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑢𝑗) = (𝑎𝑢𝑏))
10099fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑎𝑢𝑏)))
101100fveq1d 6674 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
102101adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
103 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑎𝑁)
104 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑏𝑁)
105 fvexd 6687 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) ∈ V)
10698, 102, 103, 104, 105ovmpod 7304 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
107 eqidd 2824 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
108 oveq12 7167 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑤𝑗) = (𝑎𝑤𝑏))
109108fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑎𝑤𝑏)))
110109fveq1d 6674 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
111110adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
112 fvexd 6687 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑎𝑤𝑏))‘𝑛) ∈ V)
113107, 111, 103, 104, 112ovmpod 7304 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
114106, 113eqeq12d 2839 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) ↔ ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
115114biimpd 231 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
116115exp31 422 . . . . . . . . . . . . . . . . . . . 20 ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
117116com14 96 . . . . . . . . . . . . . . . . . . 19 ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
11897, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑁𝑏𝑁) ∧ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
119118ex 415 . . . . . . . . . . . . . . . . 17 ((𝑎𝑁𝑏𝑁) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))))
120119com25 99 . . . . . . . . . . . . . . . 16 ((𝑎𝑁𝑏𝑁) → ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))))
121120pm2.43i 52 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
122121impcom 410 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))
123122imp 409 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
12490, 123sylbid 242 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
12551, 124sylbid 242 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
126125ralimdva 3179 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
127126impancom 454 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → ((𝑎𝑁𝑏𝑁) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
128127imp 409 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
12927ad2antrr 724 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑅 ∈ Ring)
130 simprl 769 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
131 simprr 771 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
13266ad2antlr 725 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → 𝑢 ∈ (Base‘𝐶))
133132adantr 483 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢 ∈ (Base‘𝐶))
134133, 3eleqtrrdi 2926 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢𝐵)
1352, 61, 3, 130, 131, 134matecld 21037 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑢𝑏) ∈ (Base‘𝑃))
13678ad2antrr 724 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤 ∈ (Base‘𝐶))
137136, 3eleqtrrdi 2926 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤𝐵)
1382, 61, 3, 130, 131, 137matecld 21037 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑤𝑏) ∈ (Base‘𝑃))
139 eqid 2823 . . . . . . . . . . 11 (coe1‘(𝑎𝑢𝑏)) = (coe1‘(𝑎𝑢𝑏))
140 eqid 2823 . . . . . . . . . . 11 (coe1‘(𝑎𝑤𝑏)) = (coe1‘(𝑎𝑤𝑏))
1411, 61, 139, 140ply1coe1eq 20468 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛) ↔ (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
142141bicomd 225 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
143129, 135, 138, 142syl3anc 1367 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
144128, 143mpbird 259 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑢𝑏) = (𝑎𝑤𝑏))
145144ralrimivva 3193 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏))
1462, 3eqmat 21035 . . . . . . 7 ((𝑢𝐵𝑤𝐵) → (𝑢 = 𝑤 ↔ ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
147146ad2antlr 725 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → (𝑢 = 𝑤 ↔ ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
148145, 147mpbird 259 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → 𝑢 = 𝑤)
149148ex 415 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → 𝑢 = 𝑤))
15025, 149sylbid 242 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤))
151150ralrimivva 3193 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑢𝐵𝑤𝐵 ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤))
152 dff13 7015 . 2 (𝑇:𝐵1-1𝐿 ↔ (𝑇:𝐵𝐿 ∧ ∀𝑢𝐵𝑤𝐵 ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤)))
15311, 151, 152sylanbrc 585 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  cmpt 5148  wf 6353  1-1wf1 6354  cfv 6357  (class class class)co 7158  cmpo 7160  Fincfn 8511  0cn0 11900  Basecbs 16485   ·𝑠 cvsca 16571   Σg cgsu 16716  .gcmg 18226  mulGrpcmgp 19241  Ringcrg 19299  var1cv1 20346  Poly1cpl1 20347  coe1cco1 20348   Mat cmat 21018   decompPMat cdecpmat 21372   pMatToMatPoly cpm2mp 21402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-srg 19258  df-ring 19301  df-subrg 19535  df-lmod 19638  df-lss 19706  df-sra 19946  df-rgmod 19947  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-vr1 20351  df-ply1 20352  df-coe1 20353  df-dsmm 20878  df-frlm 20893  df-mamu 20997  df-mat 21019  df-decpmat 21373  df-pm2mp 21403
This theorem is referenced by:  pm2mpf1o  21425
  Copyright terms: Public domain W3C validator