MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpghm Structured version   Visualization version   GIF version

Theorem pm2mpghm 20543
Description: The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpfo.p 𝑃 = (Poly1𝑅)
pm2mpfo.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpfo.b 𝐵 = (Base‘𝐶)
pm2mpfo.m = ( ·𝑠𝑄)
pm2mpfo.e = (.g‘(mulGrp‘𝑄))
pm2mpfo.x 𝑋 = (var1𝐴)
pm2mpfo.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpfo.q 𝑄 = (Poly1𝐴)
pm2mpfo.l 𝐿 = (Base‘𝑄)
pm2mpfo.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpghm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))

Proof of Theorem pm2mpghm
Dummy variables 𝑘 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpfo.b . 2 𝐵 = (Base‘𝐶)
2 pm2mpfo.l . 2 𝐿 = (Base‘𝑄)
3 eqid 2621 . 2 (+g𝐶) = (+g𝐶)
4 eqid 2621 . 2 (+g𝑄) = (+g𝑄)
5 pm2mpfo.p . . . 4 𝑃 = (Poly1𝑅)
6 pm2mpfo.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 20420 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringgrp 18476 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
97, 8syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp)
10 pm2mpfo.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
1110matring 20171 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
12 pm2mpfo.q . . . . 5 𝑄 = (Poly1𝐴)
1312ply1ring 19540 . . . 4 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
1411, 13syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
15 ringgrp 18476 . . 3 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
1614, 15syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Grp)
17 pm2mpfo.m . . 3 = ( ·𝑠𝑄)
18 pm2mpfo.e . . 3 = (.g‘(mulGrp‘𝑄))
19 pm2mpfo.x . . 3 𝑋 = (var1𝐴)
20 pm2mpfo.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
215, 6, 1, 17, 18, 19, 10, 12, 20, 2pm2mpf 20525 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
22 ringmnd 18480 . . . . . . . . . . . . . 14 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
237, 22syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
2423anim1i 591 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
25 3anass 1040 . . . . . . . . . . . 12 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) ↔ (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
2624, 25sylibr 224 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵))
271, 3mndcl 17225 . . . . . . . . . . 11 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
296, 1decpmatval 20492 . . . . . . . . . 10 (((𝑎(+g𝐶)𝑏) ∈ 𝐵𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
3028, 29sylan 488 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
31 simplll 797 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ Fin)
32 fvex 6160 . . . . . . . . . . . 12 ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ V
3332a1i 11 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ V)
34 fvex 6160 . . . . . . . . . . . 12 ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ V
3534a1i 11 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ V)
36 eqidd 2622 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
37 eqidd 2622 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
3831, 31, 33, 35, 36, 37offval22 7201 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘𝑓 (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
39 eqid 2621 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
40 eqid 2621 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
41 simpllr 798 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
42 simprl 793 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
43 simprr 795 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
441eleq2i 2690 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4544biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4645ad2antlr 762 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑎 ∈ (Base‘𝐶))
47 eqid 2621 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
486, 47matecl 20153 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝐶)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4942, 43, 46, 48syl3anc 1323 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
5049ex 450 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
5150adantrr 752 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
5251adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
53523impib 1259 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
54 simpr 477 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
55543ad2ant1 1080 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑘 ∈ ℕ0)
56 eqid 2621 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑎𝑗)) = (coe1‘(𝑖𝑎𝑗))
5756, 47, 5, 39coe1fvalcl 19504 . . . . . . . . . . . . 13 (((𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5853, 55, 57syl2anc 692 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5910, 39, 40, 31, 41, 58matbas2d 20151 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴))
60 simprl 793 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
61 simprr 795 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
621eleq2i 2690 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6362biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6463ad2antlr 762 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑏 ∈ (Base‘𝐶))
656, 47matecl 20153 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝐶)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6660, 61, 64, 65syl3anc 1323 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6766ex 450 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6867adantrl 751 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6968adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
70693impib 1259 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
71 eqid 2621 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑏𝑗)) = (coe1‘(𝑖𝑏𝑗))
7271, 47, 5, 39coe1fvalcl 19504 . . . . . . . . . . . . 13 (((𝑖𝑏𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7370, 55, 72syl2anc 692 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7410, 39, 40, 31, 41, 73matbas2d 20151 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴))
75 eqid 2621 . . . . . . . . . . . 12 (+g𝐴) = (+g𝐴)
76 eqid 2621 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
7710, 40, 75, 76matplusg2 20155 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘𝑓 (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
7859, 74, 77syl2anc 692 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘𝑓 (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
79 simplr 791 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎𝐵𝑏𝐵))
8079anim1i 591 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
81803impb 1257 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
82 eqid 2621 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
836, 1, 3, 82matplusgcell 20161 . . . . . . . . . . . . . . 15 (((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8481, 83syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8584fveq2d 6154 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗)) = (coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗))))
8685fveq1d 6152 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘))
87413ad2ant1 1080 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
885, 47, 82, 76coe1addfv 19557 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ (𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ (𝑖𝑏𝑗) ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ℕ0) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8987, 53, 70, 55, 88syl31anc 1326 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
9086, 89eqtrd 2655 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
9190mpt2eq3dva 6675 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9238, 78, 913eqtr4rd 2666 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9312ply1sca 19545 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
9411, 93syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
9594ad2antrr 761 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
9695fveq2d 6154 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (+g𝐴) = (+g‘(Scalar‘𝑄)))
97 simprl 793 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
986, 1decpmatval 20492 . . . . . . . . . . . 12 ((𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9997, 98sylan 488 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
10099eqcomd 2627 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑎 decompPMat 𝑘))
101 simprr 795 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
1026, 1decpmatval 20492 . . . . . . . . . . . 12 ((𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
103101, 102sylan 488 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
104103eqcomd 2627 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑏 decompPMat 𝑘))
10596, 100, 104oveq123d 6628 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
10630, 92, 1053eqtrd 2659 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
107106oveq1d 6622 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)))
10812ply1lmod 19544 . . . . . . . . . 10 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
10911, 108syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
110109ad2antrr 761 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
111 simpl 473 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑎𝐵)
112111ad2antlr 762 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑎𝐵)
1135, 6, 1, 10, 40decpmatcl 20494 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11441, 112, 54, 113syl3anc 1323 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11594eqcomd 2627 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑄) = 𝐴)
116115ad2antrr 761 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
117116fveq2d 6154 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
118114, 117eleqtrrd 2701 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
119 simpr 477 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑏𝐵)
120119ad2antlr 762 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑏𝐵)
1215, 6, 1, 10, 40decpmatcl 20494 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
12241, 120, 54, 121syl3anc 1323 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
123122, 117eleqtrrd 2701 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
124 eqid 2621 . . . . . . . . . . . 12 (mulGrp‘𝑄) = (mulGrp‘𝑄)
125124ringmgp 18477 . . . . . . . . . . 11 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
12614, 125syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
127126ad2antrr 761 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
12819, 12, 2vr1cl 19509 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑋𝐿)
12911, 128syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋𝐿)
130129ad2antrr 761 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐿)
131124, 2mgpbas 18419 . . . . . . . . . 10 𝐿 = (Base‘(mulGrp‘𝑄))
132131, 18mulgnn0cl 17482 . . . . . . . . 9 (((mulGrp‘𝑄) ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋𝐿) → (𝑘 𝑋) ∈ 𝐿)
133127, 54, 130, 132syl3anc 1323 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
134 eqid 2621 . . . . . . . . 9 (Scalar‘𝑄) = (Scalar‘𝑄)
135 eqid 2621 . . . . . . . . 9 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
136 eqid 2621 . . . . . . . . 9 (+g‘(Scalar‘𝑄)) = (+g‘(Scalar‘𝑄))
1372, 4, 134, 17, 135, 136lmodvsdir 18811 . . . . . . . 8 ((𝑄 ∈ LMod ∧ ((𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ 𝐿)) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
138110, 118, 123, 133, 137syl13anc 1325 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
139107, 138eqtrd 2655 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
140139mpteq2dva 4706 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
141140oveq2d 6623 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
142 eqid 2621 . . . . 5 (0g𝑄) = (0g𝑄)
143 ringcmn 18505 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
14414, 143syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
145144adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑄 ∈ CMnd)
146 nn0ex 11245 . . . . . 6 0 ∈ V
147146a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ℕ0 ∈ V)
148111anim2i 592 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
149 df-3an 1038 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
150148, 149sylibr 224 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵))
1515, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 20540 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
152150, 151sylan 488 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
153119anim2i 592 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
154 df-3an 1038 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
155153, 154sylibr 224 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵))
1565, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 20540 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
157155, 156sylan 488 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
158 eqidd 2622 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))
159 eqidd 2622 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
1605, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 20539 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
161150, 160syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1625, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 20539 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
163155, 162syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1642, 142, 4, 145, 147, 152, 157, 158, 159, 161, 163gsummptfsadd 18248 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
165141, 164eqtrd 2655 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
166 simpll 789 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑁 ∈ Fin)
167 simplr 791 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
1685, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 20523 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑎(+g𝐶)𝑏) ∈ 𝐵) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
169166, 167, 28, 168syl3anc 1323 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
1705, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 20523 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
171166, 167, 97, 170syl3anc 1323 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
1725, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 20523 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
173166, 167, 101, 172syl3anc 1323 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
174171, 173oveq12d 6625 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑇𝑎)(+g𝑄)(𝑇𝑏)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
175165, 169, 1743eqtr4d 2665 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = ((𝑇𝑎)(+g𝑄)(𝑇𝑏)))
1761, 2, 3, 4, 9, 16, 21, 175isghmd 17593 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186   class class class wbr 4615  cmpt 4675  cfv 5849  (class class class)co 6607  cmpt2 6609  𝑓 cof 6851  Fincfn 7902   finSupp cfsupp 8222  0cn0 11239  Basecbs 15784  +gcplusg 15865  Scalarcsca 15868   ·𝑠 cvsca 15869  0gc0g 16024   Σg cgsu 16025  Mndcmnd 17218  Grpcgrp 17346  .gcmg 17464   GrpHom cghm 17581  CMndccmn 18117  mulGrpcmgp 18413  Ringcrg 18471  LModclmod 18787  var1cv1 19468  Poly1cpl1 19469  coe1cco1 19470   Mat cmat 20135   decompPMat cdecpmat 20489   pMatToMatPoly cpm2mp 20519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-ot 4159  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-ofr 6854  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-sup 8295  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-fz 12272  df-fzo 12410  df-seq 12745  df-hash 13061  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-hom 15890  df-cco 15891  df-0g 16026  df-gsum 16027  df-prds 16032  df-pws 16034  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-mulg 17465  df-subg 17515  df-ghm 17582  df-cntz 17674  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-subrg 18702  df-lmod 18789  df-lss 18855  df-sra 19094  df-rgmod 19095  df-psr 19278  df-mvr 19279  df-mpl 19280  df-opsr 19282  df-psr1 19472  df-vr1 19473  df-ply1 19474  df-coe1 19475  df-dsmm 19998  df-frlm 20013  df-mamu 20112  df-mat 20136  df-decpmat 20490  df-pm2mp 20520
This theorem is referenced by:  pm2mpgrpiso  20544  pm2mprhm  20548  pm2mp  20552
  Copyright terms: Public domain W3C validator