MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.12 Structured version   Visualization version   GIF version

Theorem pm3.12 520
Description: Theorem *3.12 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.12 ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓))

Proof of Theorem pm3.12
StepHypRef Expression
1 pm3.11 519 . 2 (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓))
21orri 390 1 ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 382  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385
This theorem is referenced by:  tsan1  32912
  Copyright terms: Public domain W3C validator