MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.14 Structured version   Visualization version   GIF version

Theorem pm3.14 523
Description: Theorem *3.14 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.14 ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))

Proof of Theorem pm3.14
StepHypRef Expression
1 pm3.1 519 . 2 ((𝜑𝜓) → ¬ (¬ 𝜑 ∨ ¬ 𝜓))
21con2i 134 1 ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by:  naim1  32023  naim2  32024  finxpreclem2  32856  tsan2  33578  tsan3  33579  ntrneiel2  37863  onenotinotbothi  40401  twonotinotbothi  40402
  Copyright terms: Public domain W3C validator