MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2ni Structured version   Visualization version   GIF version

Theorem pm3.2ni 935
Description: Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
pm3.2ni.1 ¬ 𝜑
pm3.2ni.2 ¬ 𝜓
Assertion
Ref Expression
pm3.2ni ¬ (𝜑𝜓)

Proof of Theorem pm3.2ni
StepHypRef Expression
1 pm3.2ni.1 . 2 ¬ 𝜑
2 id 22 . . 3 (𝜑𝜑)
3 pm3.2ni.2 . . . 4 ¬ 𝜓
43pm2.21i 116 . . 3 (𝜓𝜑)
52, 4jaoi 393 . 2 ((𝜑𝜓) → 𝜑)
61, 5mto 188 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384
This theorem is referenced by:  snsn0non  6007  canthp1lem2  9667  recgt0ii  11121  xrltnr  12146  pnfnlt  12155  nltmnf  12156  lhop  23978  2lgslem4  25330  axlowdimlem13  26033  3pm3.2ni  31901  nosgnn0  32117  clsk1indlem4  38844  clsk1indlem1  38845  dandysum2p2e4  41671
  Copyright terms: Public domain W3C validator