MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.3 Structured version   Visualization version   GIF version

Theorem pm3.3 460
Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.3 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm3.3
StepHypRef Expression
1 id 22 . 2 (((𝜑𝜓) → 𝜒) → ((𝜑𝜓) → 𝜒))
21expd 452 1 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  impexp  462  pm4.79  606  trer  32005  bj-alanim  32291  bj-mo3OLD  32530  wl-mo3t  33029  trsbc  38271  simplbi2VD  38603  exbirVD  38610  exbiriVD  38611  3impexpVD  38613  trsbcVD  38635  simplbi2comtVD  38646
  Copyright terms: Public domain W3C validator