MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.44 Structured version   Visualization version   GIF version

Theorem pm3.44 533
Description: Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Assertion
Ref Expression
pm3.44 (((𝜓𝜑) ∧ (𝜒𝜑)) → ((𝜓𝜒) → 𝜑))

Proof of Theorem pm3.44
StepHypRef Expression
1 id 22 . 2 ((𝜓𝜑) → (𝜓𝜑))
2 id 22 . 2 ((𝜒𝜑) → (𝜒𝜑))
31, 2jaao 531 1 (((𝜓𝜑) ∧ (𝜒𝜑)) → ((𝜓𝜒) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by:  jao  534  jaob  821  dvmptconst  39431  dvmptidg  39433  dvmulcncf  39443  dvdivcncf  39445  fourierdlem101  39728
  Copyright terms: Public domain W3C validator