MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.61 Structured version   Visualization version   GIF version

Theorem pm4.61 442
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.61 (¬ (𝜑𝜓) ↔ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem pm4.61
StepHypRef Expression
1 annim 441 . 2 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21bicomi 214 1 (¬ (𝜑𝜓) ↔ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  pm4.65  443  npss  3701  difin  3845  isf32lem2  9136  nmo  29214  bnj1253  30846  unblimceq0  32193  fphpd  36899  rp-fakenanass  37380  clsk1independent  37865  nabctnabc  40432  islindeps  41560
  Copyright terms: Public domain W3C validator