MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.14 Structured version   Visualization version   GIF version

Theorem pm5.14 925
Description: Theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.14 ((𝜑𝜓) ∨ (𝜓𝜒))

Proof of Theorem pm5.14
StepHypRef Expression
1 ax-1 6 . . . 4 (𝜓 → (𝜑𝜓))
21con3i 148 . . 3 (¬ (𝜑𝜓) → ¬ 𝜓)
32pm2.21d 116 . 2 (¬ (𝜑𝜓) → (𝜓𝜒))
43orri 389 1 ((𝜑𝜓) ∨ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-or 383
This theorem is referenced by:  pm5.13  926
  Copyright terms: Public domain W3C validator