![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (reverse inference rule). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74ri.1 | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Ref | Expression |
---|---|
pm5.74ri | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74ri.1 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) | |
2 | pm5.74 259 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbir 221 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: bitrd 268 bibi2d 331 tbt 358 cbval2 2315 cbvaldva 2317 sbied 2437 sbco2d 2444 axgroth6 9688 isprm2 15442 ufileu 21770 bj-cbval2v 32862 |
Copyright terms: Public domain | W3C validator |