MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Structured version   Visualization version   GIF version

Theorem pm54.43 8811
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 8779), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1𝑜} which is the same as 𝐴 ≈ 1𝑜 by pm54.43lem 8810. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem pm110.643 8984 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)

Assertion
Ref Expression
pm54.43 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2𝑜))

Proof of Theorem pm54.43
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 7552 . . . . . . . 8 1𝑜 ∈ On
21elexi 3208 . . . . . . 7 1𝑜 ∈ V
32ensn1 8005 . . . . . 6 {1𝑜} ≈ 1𝑜
43ensymi 7991 . . . . 5 1𝑜 ≈ {1𝑜}
5 entr 7993 . . . . 5 ((𝐵 ≈ 1𝑜 ∧ 1𝑜 ≈ {1𝑜}) → 𝐵 ≈ {1𝑜})
64, 5mpan2 706 . . . 4 (𝐵 ≈ 1𝑜𝐵 ≈ {1𝑜})
71onirri 5822 . . . . . . 7 ¬ 1𝑜 ∈ 1𝑜
8 disjsn 4237 . . . . . . 7 ((1𝑜 ∩ {1𝑜}) = ∅ ↔ ¬ 1𝑜 ∈ 1𝑜)
97, 8mpbir 221 . . . . . 6 (1𝑜 ∩ {1𝑜}) = ∅
10 unen 8025 . . . . . 6 (((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) ∧ ((𝐴𝐵) = ∅ ∧ (1𝑜 ∩ {1𝑜}) = ∅)) → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
119, 10mpanr2 719 . . . . 5 (((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
1211ex 450 . . . 4 ((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜})))
136, 12sylan2 491 . . 3 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜})))
14 df-2o 7546 . . . . 5 2𝑜 = suc 1𝑜
15 df-suc 5717 . . . . 5 suc 1𝑜 = (1𝑜 ∪ {1𝑜})
1614, 15eqtri 2642 . . . 4 2𝑜 = (1𝑜 ∪ {1𝑜})
1716breq2i 4652 . . 3 ((𝐴𝐵) ≈ 2𝑜 ↔ (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
1813, 17syl6ibr 242 . 2 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ 2𝑜))
19 en1 8008 . . 3 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
20 en1 8008 . . 3 (𝐵 ≈ 1𝑜 ↔ ∃𝑦 𝐵 = {𝑦})
21 unidm 3748 . . . . . . . . . . . . . 14 ({𝑥} ∪ {𝑥}) = {𝑥}
22 sneq 4178 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2322uneq2d 3759 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦}))
2421, 23syl5reqr 2669 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥})
25 vex 3198 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2625ensn1 8005 . . . . . . . . . . . . . 14 {𝑥} ≈ 1𝑜
27 1sdom2 8144 . . . . . . . . . . . . . 14 1𝑜 ≺ 2𝑜
28 ensdomtr 8081 . . . . . . . . . . . . . 14 (({𝑥} ≈ 1𝑜 ∧ 1𝑜 ≺ 2𝑜) → {𝑥} ≺ 2𝑜)
2926, 27, 28mp2an 707 . . . . . . . . . . . . 13 {𝑥} ≺ 2𝑜
3024, 29syl6eqbr 4683 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≺ 2𝑜)
31 sdomnen 7969 . . . . . . . . . . . 12 (({𝑥} ∪ {𝑦}) ≺ 2𝑜 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2𝑜)
3230, 31syl 17 . . . . . . . . . . 11 (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2𝑜)
3332necon2ai 2820 . . . . . . . . . 10 (({𝑥} ∪ {𝑦}) ≈ 2𝑜𝑥𝑦)
34 disjsn2 4238 . . . . . . . . . 10 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
3533, 34syl 17 . . . . . . . . 9 (({𝑥} ∪ {𝑦}) ≈ 2𝑜 → ({𝑥} ∩ {𝑦}) = ∅)
3635a1i 11 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2𝑜 → ({𝑥} ∩ {𝑦}) = ∅))
37 uneq12 3754 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∪ {𝑦}))
3837breq1d 4654 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 ↔ ({𝑥} ∪ {𝑦}) ≈ 2𝑜))
39 ineq12 3801 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∩ {𝑦}))
4039eqeq1d 2622 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
4136, 38, 403imtr4d 283 . . . . . . 7 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4241ex 450 . . . . . 6 (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4342exlimdv 1859 . . . . 5 (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4443exlimiv 1856 . . . 4 (∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4544imp 445 . . 3 ((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4619, 20, 45syl2anb 496 . 2 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4718, 46impbid 202 1 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wex 1702  wcel 1988  wne 2791  cun 3565  cin 3566  c0 3907  {csn 4168   class class class wbr 4644  Oncon0 5711  suc csuc 5713  1𝑜c1o 7538  2𝑜c2o 7539  cen 7937  csdm 7939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-1o 7545  df-2o 7546  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943
This theorem is referenced by:  pr2nelem  8812  pm110.643  8984  isprm2lem  15375
  Copyright terms: Public domain W3C validator