![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm54.43lem | Structured version Visualization version GIF version |
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 8832), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1𝑜}. Here we show that this is equivalent to 𝐴 ≈ 1𝑜 so that we can use the latter more convenient notation in pm54.43 8864. (Contributed by NM, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm54.43lem | ⊢ (𝐴 ≈ 1𝑜 ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1𝑜}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carden2b 8831 | . . . 4 ⊢ (𝐴 ≈ 1𝑜 → (card‘𝐴) = (card‘1𝑜)) | |
2 | 1onn 7764 | . . . . 5 ⊢ 1𝑜 ∈ ω | |
3 | cardnn 8827 | . . . . 5 ⊢ (1𝑜 ∈ ω → (card‘1𝑜) = 1𝑜) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (card‘1𝑜) = 1𝑜 |
5 | 1, 4 | syl6eq 2701 | . . 3 ⊢ (𝐴 ≈ 1𝑜 → (card‘𝐴) = 1𝑜) |
6 | 4 | eqeq2i 2663 | . . . . 5 ⊢ ((card‘𝐴) = (card‘1𝑜) ↔ (card‘𝐴) = 1𝑜) |
7 | 6 | biimpri 218 | . . . 4 ⊢ ((card‘𝐴) = 1𝑜 → (card‘𝐴) = (card‘1𝑜)) |
8 | 1n0 7620 | . . . . . . . 8 ⊢ 1𝑜 ≠ ∅ | |
9 | 8 | neii 2825 | . . . . . . 7 ⊢ ¬ 1𝑜 = ∅ |
10 | eqeq1 2655 | . . . . . . 7 ⊢ ((card‘𝐴) = 1𝑜 → ((card‘𝐴) = ∅ ↔ 1𝑜 = ∅)) | |
11 | 9, 10 | mtbiri 316 | . . . . . 6 ⊢ ((card‘𝐴) = 1𝑜 → ¬ (card‘𝐴) = ∅) |
12 | ndmfv 6256 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
13 | 11, 12 | nsyl2 142 | . . . . 5 ⊢ ((card‘𝐴) = 1𝑜 → 𝐴 ∈ dom card) |
14 | 1on 7612 | . . . . . 6 ⊢ 1𝑜 ∈ On | |
15 | onenon 8813 | . . . . . 6 ⊢ (1𝑜 ∈ On → 1𝑜 ∈ dom card) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ 1𝑜 ∈ dom card |
17 | carden2 8851 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 1𝑜 ∈ dom card) → ((card‘𝐴) = (card‘1𝑜) ↔ 𝐴 ≈ 1𝑜)) | |
18 | 13, 16, 17 | sylancl 695 | . . . 4 ⊢ ((card‘𝐴) = 1𝑜 → ((card‘𝐴) = (card‘1𝑜) ↔ 𝐴 ≈ 1𝑜)) |
19 | 7, 18 | mpbid 222 | . . 3 ⊢ ((card‘𝐴) = 1𝑜 → 𝐴 ≈ 1𝑜) |
20 | 5, 19 | impbii 199 | . 2 ⊢ (𝐴 ≈ 1𝑜 ↔ (card‘𝐴) = 1𝑜) |
21 | elex 3243 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ∈ V) | |
22 | 13, 21 | syl 17 | . . 3 ⊢ ((card‘𝐴) = 1𝑜 → 𝐴 ∈ V) |
23 | fveq2 6229 | . . . 4 ⊢ (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴)) | |
24 | 23 | eqeq1d 2653 | . . 3 ⊢ (𝑥 = 𝐴 → ((card‘𝑥) = 1𝑜 ↔ (card‘𝐴) = 1𝑜)) |
25 | 22, 24 | elab3 3390 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1𝑜} ↔ (card‘𝐴) = 1𝑜) |
26 | 20, 25 | bitr4i 267 | 1 ⊢ (𝐴 ≈ 1𝑜 ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1𝑜}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 {cab 2637 Vcvv 3231 ∅c0 3948 class class class wbr 4685 dom cdm 5143 Oncon0 5761 ‘cfv 5926 ωcom 7107 1𝑜c1o 7598 ≈ cen 7994 cardccrd 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |