Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap1N Structured version   Visualization version   GIF version

Theorem pmap1N 36902
Description: Value of the projective map of a Hilbert lattice at lattice unit. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmap1.u 1 = (1.‘𝐾)
pmap1.a 𝐴 = (Atoms‘𝐾)
pmap1.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmap1N (𝐾 ∈ OP → (𝑀1 ) = 𝐴)

Proof of Theorem pmap1N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmap1.u . . . 4 1 = (1.‘𝐾)
31, 2op1cl 36320 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
4 eqid 2821 . . . 4 (le‘𝐾) = (le‘𝐾)
5 pmap1.a . . . 4 𝐴 = (Atoms‘𝐾)
6 pmap1.m . . . 4 𝑀 = (pmap‘𝐾)
71, 4, 5, 6pmapval 36892 . . 3 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → (𝑀1 ) = {𝑝𝐴𝑝(le‘𝐾) 1 })
83, 7mpdan 685 . 2 (𝐾 ∈ OP → (𝑀1 ) = {𝑝𝐴𝑝(le‘𝐾) 1 })
91, 5atbase 36424 . . . . 5 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
101, 4, 2ople1 36326 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾) 1 )
119, 10sylan2 594 . . . 4 ((𝐾 ∈ OP ∧ 𝑝𝐴) → 𝑝(le‘𝐾) 1 )
1211ralrimiva 3182 . . 3 (𝐾 ∈ OP → ∀𝑝𝐴 𝑝(le‘𝐾) 1 )
13 rabid2 3381 . . 3 (𝐴 = {𝑝𝐴𝑝(le‘𝐾) 1 } ↔ ∀𝑝𝐴 𝑝(le‘𝐾) 1 )
1412, 13sylibr 236 . 2 (𝐾 ∈ OP → 𝐴 = {𝑝𝐴𝑝(le‘𝐾) 1 })
158, 14eqtr4d 2859 1 (𝐾 ∈ OP → (𝑀1 ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wral 3138  {crab 3142   class class class wbr 5065  cfv 6354  Basecbs 16482  lecple 16571  1.cp1 17647  OPcops 36307  Atomscatm 36398  pmapcpmap 36632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-lub 17583  df-p1 17649  df-oposet 36311  df-ats 36402  df-pmap 36639
This theorem is referenced by:  pmapglb2N  36906  pmapglb2xN  36907
  Copyright terms: Public domain W3C validator