Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapeq0 Structured version   Visualization version   GIF version

Theorem pmapeq0 36904
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapeq0.b 𝐵 = (Base‘𝐾)
pmapeq0.z 0 = (0.‘𝐾)
pmapeq0.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapeq0 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = 0 ))

Proof of Theorem pmapeq0
StepHypRef Expression
1 hlatl 36498 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 483 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
3 pmapeq0.z . . . . 5 0 = (0.‘𝐾)
4 pmapeq0.m . . . . 5 𝑀 = (pmap‘𝐾)
53, 4pmap0 36903 . . . 4 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)
62, 5syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀0 ) = ∅)
76eqeq2d 2834 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ (𝑀𝑋) = ∅))
8 hlop 36500 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 483 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
10 pmapeq0.b . . . . 5 𝐵 = (Base‘𝐾)
1110, 3op0cl 36322 . . . 4 (𝐾 ∈ OP → 0𝐵)
129, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 0𝐵)
1310, 4pmap11 36900 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵0𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ 𝑋 = 0 ))
1412, 13mpd3an3 1458 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ 𝑋 = 0 ))
157, 14bitr3d 283 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  c0 4293  cfv 6357  Basecbs 16485  0.cp0 17649  OPcops 36310  AtLatcal 36402  HLchlt 36488  pmapcpmap 36635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-pmap 36642
This theorem is referenced by:  pmapjat1  36991
  Copyright terms: Public domain W3C validator