Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapfval Structured version   Visualization version   GIF version

Theorem pmapfval 34561
Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐵 = (Base‘𝐾)
pmapfval.l = (le‘𝐾)
pmapfval.a 𝐴 = (Atoms‘𝐾)
pmapfval.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapfval (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
Distinct variable groups:   𝐴,𝑎   𝑥,𝐵   𝑥,𝑎,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑎)   𝐶(𝑥,𝑎)   (𝑥,𝑎)   𝑀(𝑥,𝑎)

Proof of Theorem pmapfval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3202 . 2 (𝐾𝐶𝐾 ∈ V)
2 pmapfval.m . . 3 𝑀 = (pmap‘𝐾)
3 fveq2 6158 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 pmapfval.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2673 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6158 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
7 pmapfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7syl6eqr 2673 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
9 fveq2 6158 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
10 pmapfval.l . . . . . . . 8 = (le‘𝐾)
119, 10syl6eqr 2673 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1211breqd 4634 . . . . . 6 (𝑘 = 𝐾 → (𝑎(le‘𝑘)𝑥𝑎 𝑥))
138, 12rabeqbidv 3185 . . . . 5 (𝑘 = 𝐾 → {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥} = {𝑎𝐴𝑎 𝑥})
145, 13mpteq12dv 4703 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘) ↦ {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥}) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
15 df-pmap 34309 . . . 4 pmap = (𝑘 ∈ V ↦ (𝑥 ∈ (Base‘𝑘) ↦ {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥}))
16 fvex 6168 . . . . . 6 (Base‘𝐾) ∈ V
174, 16eqeltri 2694 . . . . 5 𝐵 ∈ V
1817mptex 6451 . . . 4 (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}) ∈ V
1914, 15, 18fvmpt 6249 . . 3 (𝐾 ∈ V → (pmap‘𝐾) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
202, 19syl5eq 2667 . 2 (𝐾 ∈ V → 𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
211, 20syl 17 1 (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {crab 2912  Vcvv 3190   class class class wbr 4623  cmpt 4683  cfv 5857  Basecbs 15800  lecple 15888  Atomscatm 34069  pmapcpmap 34302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-pmap 34309
This theorem is referenced by:  pmapval  34562
  Copyright terms: Public domain W3C validator