Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat2 Structured version   Visualization version   GIF version

Theorem pmapjat2 33941
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjat2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = ((𝑀𝑄) + (𝑀𝑋)))

Proof of Theorem pmapjat2
StepHypRef Expression
1 pmapjat.b . . 3 𝐵 = (Base‘𝐾)
2 pmapjat.j . . 3 = (join‘𝐾)
3 pmapjat.a . . 3 𝐴 = (Atoms‘𝐾)
4 pmapjat.m . . 3 𝑀 = (pmap‘𝐾)
5 pmapjat.p . . 3 + = (+𝑃𝐾)
61, 2, 3, 4, 5pmapjat1 33940 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
7 hllat 33451 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
873ad2ant1 1074 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ Lat)
91, 3atbase 33377 . . . . 5 (𝑄𝐴𝑄𝐵)
1093ad2ant3 1076 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐵)
11 simp2 1054 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑋𝐵)
121, 2latjcom 16830 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) = (𝑋 𝑄))
138, 10, 11, 12syl3anc 1317 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑄 𝑋) = (𝑋 𝑄))
1413fveq2d 6091 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = (𝑀‘(𝑋 𝑄)))
15 simp1 1053 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ HL)
161, 3, 4pmapssat 33846 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
1715, 10, 16syl2anc 690 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ⊆ 𝐴)
181, 3, 4pmapssat 33846 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
19183adant3 1073 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑋) ⊆ 𝐴)
203, 5paddcom 33900 . . 3 ((𝐾 ∈ Lat ∧ (𝑀𝑄) ⊆ 𝐴 ∧ (𝑀𝑋) ⊆ 𝐴) → ((𝑀𝑄) + (𝑀𝑋)) = ((𝑀𝑋) + (𝑀𝑄)))
218, 17, 19, 20syl3anc 1317 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) + (𝑀𝑋)) = ((𝑀𝑋) + (𝑀𝑄)))
226, 14, 213eqtr4d 2653 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = ((𝑀𝑄) + (𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1976  wss 3539  cfv 5789  (class class class)co 6526  Basecbs 15643  joincjn 16715  Latclat 16816  Atomscatm 33351  HLchlt 33438  pmapcpmap 33584  +𝑃cpadd 33882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-1st 7036  df-2nd 7037  df-preset 16699  df-poset 16717  df-plt 16729  df-lub 16745  df-glb 16746  df-join 16747  df-meet 16748  df-p0 16810  df-lat 16817  df-clat 16879  df-oposet 33264  df-ol 33266  df-oml 33267  df-covers 33354  df-ats 33355  df-atl 33386  df-cvlat 33410  df-hlat 33439  df-pmap 33591  df-padd 33883
This theorem is referenced by:  atmod1i1  33944
  Copyright terms: Public domain W3C validator