Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjoin Structured version   Visualization version   GIF version

Theorem pmapjoin 33950
Description: The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapjoin.b 𝐵 = (Base‘𝐾)
pmapjoin.j = (join‘𝐾)
pmapjoin.m 𝑀 = (pmap‘𝐾)
pmapjoin.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjoin ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) + (𝑀𝑌)) ⊆ (𝑀‘(𝑋 𝑌)))

Proof of Theorem pmapjoin
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . . 7 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝 ∈ (Atoms‘𝐾))
21a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝 ∈ (Atoms‘𝐾)))
3 pmapjoin.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2610 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 33388 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
6 eqid 2610 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
7 pmapjoin.j . . . . . . . . . . 11 = (join‘𝐾)
83, 6, 7latlej1 16832 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
98adantr 480 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
10 simpl1 1057 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Lat)
11 simpr 476 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
12 simpl2 1058 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋𝐵)
133, 7latjcl 16823 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1413adantr 480 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌) ∈ 𝐵)
153, 6lattr 16828 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
1610, 11, 12, 14, 15syl13anc 1320 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑝(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
179, 16mpan2d 706 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌)))
1817expimpd 627 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) → 𝑝(le‘𝐾)(𝑋 𝑌)))
195, 18sylani 684 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝(le‘𝐾)(𝑋 𝑌)))
202, 19jcad 554 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
21 simpl 472 . . . . . . 7 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝 ∈ (Atoms‘𝐾))
2221a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝 ∈ (Atoms‘𝐾)))
233, 6, 7latlej2 16833 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
2423adantr 480 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
25 simpl3 1059 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌𝐵)
263, 6lattr 16828 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑌𝑌(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2710, 11, 25, 14, 26syl13anc 1320 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑝(le‘𝐾)𝑌𝑌(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2824, 27mpan2d 706 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌𝑝(le‘𝐾)(𝑋 𝑌)))
2928expimpd 627 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
305, 29sylani 684 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
3122, 30jcad 554 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
3220, 31jaod 394 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
33 simpl 472 . . . . . 6 ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝 ∈ (Atoms‘𝐾))
3433a1i 11 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝 ∈ (Atoms‘𝐾)))
35 pmapjoin.m . . . . . . . . . . . . . 14 𝑀 = (pmap‘𝐾)
363, 6, 4, 35elpmap 33856 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)))
37363adant3 1074 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)))
383, 6, 4, 35elpmap 33856 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑟 ∈ (𝑀𝑌) ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)))
39383adant2 1073 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑟 ∈ (𝑀𝑌) ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)))
4037, 39anbi12d 743 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌))))
41 an4 861 . . . . . . . . . . 11 (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)))
4240, 41syl6bb 275 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌))))
4342adantr 480 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌))))
443, 4atbase 33388 . . . . . . . . . . 11 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
453, 4atbase 33388 . . . . . . . . . . 11 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
4644, 45anim12i 588 . . . . . . . . . 10 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑞𝐵𝑟𝐵))
47 simpll1 1093 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝐾 ∈ Lat)
48 simprl 790 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
49 simpll2 1094 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑋𝐵)
50 simprr 792 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
51 simpll3 1095 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑌𝐵)
523, 6, 7latjlej12 16839 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑞𝐵𝑋𝐵) ∧ (𝑟𝐵𝑌𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)))
5347, 48, 49, 50, 51, 52syl122anc 1327 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)))
54 simplr 788 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑝𝐵)
553, 7latjcl 16823 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞𝐵𝑟𝐵) → (𝑞 𝑟) ∈ 𝐵)
5647, 48, 50, 55syl3anc 1318 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → (𝑞 𝑟) ∈ 𝐵)
5713ad2antrr 758 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → (𝑋 𝑌) ∈ 𝐵)
583, 6lattr 16828 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑝𝐵 ∧ (𝑞 𝑟) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)(𝑞 𝑟) ∧ (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
5947, 54, 56, 57, 58syl13anc 1320 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑝(le‘𝐾)(𝑞 𝑟) ∧ (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6059expcomd 453 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞 𝑟)(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6153, 60syld 46 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6261expimpd 627 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑞𝐵𝑟𝐵) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6346, 62sylani 684 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6443, 63sylbid 229 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6564rexlimdvv 3019 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6665expimpd 627 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
675, 66sylani 684 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6834, 67jcad 554 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
6932, 68jaod 394 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟))) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
70 simp1 1054 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
713, 4, 35pmapssat 33857 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
72713adant3 1074 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
733, 4, 35pmapssat 33857 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
74733adant2 1073 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
75 pmapjoin.p . . . . . 6 + = (+𝑃𝐾)
766, 7, 4, 75elpadd 33897 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ (𝑀𝑌) ⊆ (Atoms‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
7770, 72, 74, 76syl3anc 1318 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
783, 6, 4, 35elpmap 33856 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑝 ∈ (𝑀𝑋) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)))
79783adant3 1074 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀𝑋) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)))
803, 6, 4, 35elpmap 33856 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑝 ∈ (𝑀𝑌) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)))
81803adant2 1073 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀𝑌) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)))
8279, 81orbi12d 742 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ↔ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌))))
8382orbi1d 735 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟))) ↔ (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
8477, 83bitrd 267 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
853, 6, 4, 35elpmap 33856 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑌)) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
8670, 13, 85syl2anc 691 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑌)) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
8769, 84, 863imtr4d 282 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) → 𝑝 ∈ (𝑀‘(𝑋 𝑌))))
8887ssrdv 3574 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) + (𝑀𝑌)) ⊆ (𝑀‘(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  wss 3540   class class class wbr 4578  cfv 5790  (class class class)co 6527  Basecbs 15644  lecple 15724  joincjn 16716  Latclat 16817  Atomscatm 33362  pmapcpmap 33595  +𝑃cpadd 33893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-poset 16718  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-lat 16818  df-ats 33366  df-pmap 33602  df-padd 33894
This theorem is referenced by:  pmapjat1  33951  hlmod1i  33954  paddunN  34025  pl42lem2N  34078
  Copyright terms: Public domain W3C validator