Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw1lem1 Structured version   Visualization version   GIF version

Theorem pmatcollpw1lem1 20781
 Description: Lemma 1 for pmatcollpw1 20783. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw1.p 𝑃 = (Poly1𝑅)
pmatcollpw1.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw1.b 𝐵 = (Base‘𝐶)
pmatcollpw1.m × = ( ·𝑠𝑃)
pmatcollpw1.e = (.g‘(mulGrp‘𝑃))
pmatcollpw1.x 𝑋 = (var1𝑅)
Assertion
Ref Expression
pmatcollpw1lem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋))) finSupp (0g𝑃))
Distinct variable groups:   𝐵,𝑛   𝑛,𝐼   𝑛,𝐽   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑋   × ,𝑛   ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)

Proof of Theorem pmatcollpw1lem1
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6364 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (0g𝑃) ∈ V)
2 ovexd 6843 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑛 ∈ ℕ0) → ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋)) ∈ V)
3 oveq2 6821 . . . 4 (𝑛 = 𝑥 → (𝑀 decompPMat 𝑛) = (𝑀 decompPMat 𝑥))
43oveqd 6830 . . 3 (𝑛 = 𝑥 → (𝐼(𝑀 decompPMat 𝑛)𝐽) = (𝐼(𝑀 decompPMat 𝑥)𝐽))
5 oveq1 6820 . . 3 (𝑛 = 𝑥 → (𝑛 𝑋) = (𝑥 𝑋))
64, 5oveq12d 6831 . 2 (𝑛 = 𝑥 → ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋)) = ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)))
7 pmatcollpw1.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
8 eqid 2760 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
9 pmatcollpw1.b . . . . 5 𝐵 = (Base‘𝐶)
10 simp2 1132 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → 𝐼𝑁)
11 simp3 1133 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → 𝐽𝑁)
12 simp13 1248 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → 𝑀𝐵)
137, 8, 9, 10, 11, 12matecld 20434 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ (Base‘𝑃))
14 eqid 2760 . . . . 5 (coe1‘(𝐼𝑀𝐽)) = (coe1‘(𝐼𝑀𝐽))
15 pmatcollpw1.p . . . . 5 𝑃 = (Poly1𝑅)
16 eqid 2760 . . . . 5 (0g𝑅) = (0g𝑅)
1714, 8, 15, 16coe1ae0 19788 . . . 4 ((𝐼𝑀𝐽) ∈ (Base‘𝑃) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)))
1813, 17syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)))
19 simpl12 1317 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
2012adantr 472 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → 𝑀𝐵)
21 simpr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
22 3simpc 1147 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝐼𝑁𝐽𝑁))
2322adantr 472 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → (𝐼𝑁𝐽𝑁))
2415, 7, 9decpmate 20773 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑀 decompPMat 𝑥)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝑥))
2519, 20, 21, 23, 24syl31anc 1480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → (𝐼(𝑀 decompPMat 𝑥)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝑥))
2625adantr 472 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → (𝐼(𝑀 decompPMat 𝑥)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝑥))
27 simpr 479 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅))
2826, 27eqtrd 2794 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → (𝐼(𝑀 decompPMat 𝑥)𝐽) = (0g𝑅))
2928oveq1d 6828 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = ((0g𝑅) × (𝑥 𝑋)))
30 pmatcollpw1.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
31 eqid 2760 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
32 pmatcollpw1.e . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝑃))
3315, 30, 31, 32, 8ply1moncl 19843 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
3419, 21, 33syl2anc 696 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
35 pmatcollpw1.m . . . . . . . . . . 11 × = ( ·𝑠𝑃)
3615, 8, 35, 16ply10s0 19828 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
3719, 34, 36syl2anc 696 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
3837adantr 472 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
3929, 38eqtrd 2794 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃))
4039ex 449 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → (((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅) → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃)))
4140imim2d 57 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → (𝑠 < 𝑥 → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃))))
4241ralimdva 3100 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃))))
4342reximdv 3154 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃))))
4418, 43mpd 15 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃)))
451, 2, 6, 44mptnn0fsuppd 12992 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋))) finSupp (0g𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  Vcvv 3340   class class class wbr 4804   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6813  Fincfn 8121   finSupp cfsupp 8440   < clt 10266  ℕ0cn0 11484  Basecbs 16059   ·𝑠 cvsca 16147  0gc0g 16302  .gcmg 17741  mulGrpcmgp 18689  Ringcrg 18747  var1cv1 19748  Poly1cpl1 19749  coe1cco1 19750   Mat cmat 20415   decompPMat cdecpmat 20769 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-ofr 7063  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-hom 16168  df-cco 16169  df-0g 16304  df-gsum 16305  df-prds 16310  df-pws 16312  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-subrg 18980  df-lmod 19067  df-lss 19135  df-sra 19374  df-rgmod 19375  df-psr 19558  df-mvr 19559  df-mpl 19560  df-opsr 19562  df-psr1 19752  df-vr1 19753  df-ply1 19754  df-coe1 19755  df-dsmm 20278  df-frlm 20293  df-mat 20416  df-decpmat 20770 This theorem is referenced by:  pmatcollpw1  20783
 Copyright terms: Public domain W3C validator