MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi 20584
Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
pmatcollpw3fi ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐷𝑚 (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐵,𝑠,𝑛   𝐶,𝑛   𝑀,𝑠   𝑁,𝑠   𝑅,𝑠   𝐵,𝑓   𝐶,𝑓,𝑛   𝐷,𝑓   𝑓,𝑀   𝑓,𝑁   𝑅,𝑓   𝑇,𝑓   𝑓,𝑋   ,𝑓   ,𝑓   𝑓,𝑠
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠)   𝐶(𝑠)   𝐷(𝑛,𝑠)   𝑃(𝑓,𝑠)   𝑇(𝑛,𝑠)   (𝑠)   (𝑛,𝑠)   𝑋(𝑠)

Proof of Theorem pmatcollpw3fi
StepHypRef Expression
1 pmatcollpw.p . . 3 𝑃 = (Poly1𝑅)
2 pmatcollpw.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 pmatcollpw.b . . 3 𝐵 = (Base‘𝐶)
4 pmatcollpw.m . . 3 = ( ·𝑠𝐶)
5 pmatcollpw.e . . 3 = (.g‘(mulGrp‘𝑃))
6 pmatcollpw.x . . 3 𝑋 = (var1𝑅)
7 pmatcollpw.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
81, 2, 3, 4, 5, 6, 7pmatcollpwfi 20581 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
9 elnn0uz 11722 . . . . . 6 (𝑠 ∈ ℕ0𝑠 ∈ (ℤ‘0))
10 fzn0 12352 . . . . . 6 ((0...𝑠) ≠ ∅ ↔ 𝑠 ∈ (ℤ‘0))
119, 10sylbb2 228 . . . . 5 (𝑠 ∈ ℕ0 → (0...𝑠) ≠ ∅)
12 fz0ssnn0 12431 . . . . 5 (0...𝑠) ⊆ ℕ0
1311, 12jctil 560 . . . 4 (𝑠 ∈ ℕ0 → ((0...𝑠) ⊆ ℕ0 ∧ (0...𝑠) ≠ ∅))
14 pmatcollpw3.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
15 pmatcollpw3.d . . . . 5 𝐷 = (Base‘𝐴)
161, 2, 3, 4, 5, 6, 7, 14, 15pmatcollpw3lem 20582 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ((0...𝑠) ⊆ ℕ0 ∧ (0...𝑠) ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷𝑚 (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
1713, 16sylan2 491 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷𝑚 (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
1817reximdva 3016 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐷𝑚 (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
198, 18mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐷𝑚 (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1482  wcel 1989  wne 2793  wrex 2912  wss 3572  c0 3913  cmpt 4727  cfv 5886  (class class class)co 6647  𝑚 cmap 7854  Fincfn 7952  0cc0 9933  0cn0 11289  cuz 11684  ...cfz 12323  Basecbs 15851   ·𝑠 cvsca 15939   Σg cgsu 16095  .gcmg 17534  mulGrpcmgp 18483  CRingccrg 18542  var1cv1 19540  Poly1cpl1 19541   Mat cmat 20207   matToPolyMat cmat2pmat 20503   decompPMat cdecpmat 20561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-ot 4184  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-ofr 6895  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-cur 7390  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-sup 8345  df-oi 8412  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-fzo 12462  df-seq 12797  df-hash 13113  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-hom 15960  df-cco 15961  df-0g 16096  df-gsum 16097  df-prds 16102  df-pws 16104  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-mhm 17329  df-submnd 17330  df-grp 17419  df-minusg 17420  df-sbg 17421  df-mulg 17535  df-subg 17585  df-ghm 17652  df-cntz 17744  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-srg 18500  df-ring 18543  df-cring 18544  df-subrg 18772  df-lmod 18859  df-lss 18927  df-sra 19166  df-rgmod 19167  df-assa 19306  df-ascl 19308  df-psr 19350  df-mvr 19351  df-mpl 19352  df-opsr 19354  df-psr1 19544  df-vr1 19545  df-ply1 19546  df-coe1 19547  df-dsmm 20070  df-frlm 20085  df-mamu 20184  df-mat 20208  df-mat2pmat 20506  df-decpmat 20562
This theorem is referenced by:  pmatcollpw3fi1  20587
  Copyright terms: Public domain W3C validator