![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmeasadd | Structured version Visualization version GIF version |
Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
Ref | Expression |
---|---|
caraext.1 | ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) |
caraext.2 | ⊢ (𝜑 → (𝑃‘∅) = 0) |
caraext.3 | ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) |
pmeassubadd.q | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
pmeassubadd.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑄) |
pmeassubadd.2 | ⊢ (𝜑 → 𝐴 ≼ ω) |
pmeassubadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) |
pmeasadd.4 | ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
pmeasadd | ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmeassubadd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) | |
2 | 1 | ralrimiva 2995 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅) |
3 | dfiun3g 5410 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
5 | 4 | fveq2d 6233 | . 2 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
6 | pmeassubadd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≼ ω) | |
7 | mptct 9398 | . . . . . 6 ⊢ (𝐴 ≼ ω → (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
8 | rnct 9385 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
10 | eqid 2651 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
11 | 10 | rnmptss 6432 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
12 | 2, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
13 | pmeasadd.4 | . . . . . 6 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | |
14 | disjrnmpt 29524 | . . . . . 6 ⊢ (Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) |
16 | 9, 12, 15 | 3jca 1261 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) |
17 | 16 | ancli 573 | . . 3 ⊢ (𝜑 → (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
18 | ctex 8012 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
19 | mptexg 6525 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
20 | 6, 18, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
21 | rnexg 7140 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
22 | breq1 4688 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω)) | |
23 | sseq1 3659 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ⊆ 𝑅 ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅)) | |
24 | disjeq1 4659 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) | |
25 | 22, 23, 24 | 3anbi123d 1439 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
26 | 25 | anbi2d 740 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)))) |
27 | unieq 4476 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ∪ 𝑥 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
28 | 27 | fveq2d 6233 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑃‘∪ 𝑥) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
29 | esumeq1 30224 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) | |
30 | 28, 29 | eqeq12d 2666 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) ↔ (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
31 | 26, 30 | imbi12d 333 | . . . . 5 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) ↔ ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)))) |
32 | caraext.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) | |
33 | 31, 32 | vtoclg 3297 | . . . 4 ⊢ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
34 | 20, 21, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
35 | 17, 34 | mpd 15 | . 2 ⊢ (𝜑 → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) |
36 | fveq2 6229 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑃‘𝑦) = (𝑃‘𝐵)) | |
37 | 6, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
38 | caraext.1 | . . . . 5 ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) | |
39 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃:𝑅⟶(0[,]+∞)) |
40 | 39, 1 | ffvelrnd 6400 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑃‘𝐵) ∈ (0[,]+∞)) |
41 | fveq2 6229 | . . . . 5 ⊢ (𝐵 = ∅ → (𝑃‘𝐵) = (𝑃‘∅)) | |
42 | 41 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = (𝑃‘∅)) |
43 | caraext.2 | . . . . 5 ⊢ (𝜑 → (𝑃‘∅) = 0) | |
44 | 43 | ad2antrr 762 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0) |
45 | 42, 44 | eqtrd 2685 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = 0) |
46 | 36, 37, 40, 1, 45, 13 | esumrnmpt2 30258 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
47 | 5, 35, 46 | 3eqtrd 2689 | 1 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 Vcvv 3231 ∖ cdif 3604 ∪ cun 3605 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 ∪ cuni 4468 ∪ ciun 4552 Disj wdisj 4652 class class class wbr 4685 ↦ cmpt 4762 ran crn 5144 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ωcom 7107 ≼ cdom 7995 0cc0 9974 +∞cpnf 10109 [,]cicc 12216 Σ*cesum 30217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-ac2 9323 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-ac 8977 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ioc 12218 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-fac 13101 df-bc 13130 df-hash 13158 df-shft 13851 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 df-clim 14263 df-rlim 14264 df-sum 14461 df-ef 14842 df-sin 14844 df-cos 14845 df-pi 14847 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-ordt 16208 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-ps 17247 df-tsr 17248 df-plusf 17288 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-subrg 18826 df-abv 18865 df-lmod 18913 df-scaf 18914 df-sra 19220 df-rgmod 19221 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-lp 20988 df-perf 20989 df-cn 21079 df-cnp 21080 df-haus 21167 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-tmd 21923 df-tgp 21924 df-tsms 21977 df-trg 22010 df-xms 22172 df-ms 22173 df-tms 22174 df-nm 22434 df-ngp 22435 df-nrg 22437 df-nlm 22438 df-ii 22727 df-cncf 22728 df-limc 23675 df-dv 23676 df-log 24348 df-esum 30218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |