Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasadd Structured version   Visualization version   GIF version

 Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeassubadd.q 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
pmeassubadd.2 (𝜑𝐴 ≼ ω)
pmeassubadd.3 ((𝜑𝑘𝐴) → 𝐵𝑅)
pmeasadd.4 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
pmeasadd (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑃,𝑘   𝑅,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑠)   𝐵(𝑘,𝑠)   𝑃(𝑠)   𝑄(𝑥,𝑦,𝑘,𝑠)   𝑅(𝑠)   𝑂(𝑥,𝑦,𝑘,𝑠)

Proof of Theorem pmeasadd
StepHypRef Expression
1 pmeassubadd.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑅)
21ralrimiva 2995 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑅)
3 dfiun3g 5410 . . . 4 (∀𝑘𝐴 𝐵𝑅 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
42, 3syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
54fveq2d 6233 . 2 (𝜑 → (𝑃 𝑘𝐴 𝐵) = (𝑃 ran (𝑘𝐴𝐵)))
6 pmeassubadd.2 . . . . . 6 (𝜑𝐴 ≼ ω)
7 mptct 9398 . . . . . 6 (𝐴 ≼ ω → (𝑘𝐴𝐵) ≼ ω)
8 rnct 9385 . . . . . 6 ((𝑘𝐴𝐵) ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
96, 7, 83syl 18 . . . . 5 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
10 eqid 2651 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1110rnmptss 6432 . . . . . 6 (∀𝑘𝐴 𝐵𝑅 → ran (𝑘𝐴𝐵) ⊆ 𝑅)
122, 11syl 17 . . . . 5 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑅)
13 pmeasadd.4 . . . . . 6 (𝜑Disj 𝑘𝐴 𝐵)
14 disjrnmpt 29524 . . . . . 6 (Disj 𝑘𝐴 𝐵Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)
1513, 14syl 17 . . . . 5 (𝜑Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)
169, 12, 153jca 1261 . . . 4 (𝜑 → (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))
1716ancli 573 . . 3 (𝜑 → (𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)))
18 ctex 8012 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
19 mptexg 6525 . . . . 5 (𝐴 ∈ V → (𝑘𝐴𝐵) ∈ V)
206, 18, 193syl 18 . . . 4 (𝜑 → (𝑘𝐴𝐵) ∈ V)
21 rnexg 7140 . . . 4 ((𝑘𝐴𝐵) ∈ V → ran (𝑘𝐴𝐵) ∈ V)
22 breq1 4688 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (𝑥 ≼ ω ↔ ran (𝑘𝐴𝐵) ≼ ω))
23 sseq1 3659 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (𝑥𝑅 ↔ ran (𝑘𝐴𝐵) ⊆ 𝑅))
24 disjeq1 4659 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))
2522, 23, 243anbi123d 1439 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)))
2625anbi2d 740 . . . . . 6 (𝑥 = ran (𝑘𝐴𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))))
27 unieq 4476 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → 𝑥 = ran (𝑘𝐴𝐵))
2827fveq2d 6233 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → (𝑃 𝑥) = (𝑃 ran (𝑘𝐴𝐵)))
29 esumeq1 30224 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))
3028, 29eqeq12d 2666 . . . . . 6 (𝑥 = ran (𝑘𝐴𝐵) → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3126, 30imbi12d 333 . . . . 5 (𝑥 = ran (𝑘𝐴𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))))
32 caraext.3 . . . . 5 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
3331, 32vtoclg 3297 . . . 4 (ran (𝑘𝐴𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3420, 21, 333syl 18 . . 3 (𝜑 → ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3517, 34mpd 15 . 2 (𝜑 → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))
36 fveq2 6229 . . 3 (𝑦 = 𝐵 → (𝑃𝑦) = (𝑃𝐵))
376, 18syl 17 . . 3 (𝜑𝐴 ∈ V)
38 caraext.1 . . . . 5 (𝜑𝑃:𝑅⟶(0[,]+∞))
3938adantr 480 . . . 4 ((𝜑𝑘𝐴) → 𝑃:𝑅⟶(0[,]+∞))
4039, 1ffvelrnd 6400 . . 3 ((𝜑𝑘𝐴) → (𝑃𝐵) ∈ (0[,]+∞))
41 fveq2 6229 . . . . 5 (𝐵 = ∅ → (𝑃𝐵) = (𝑃‘∅))
4241adantl 481 . . . 4 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃𝐵) = (𝑃‘∅))
43 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
4443ad2antrr 762 . . . 4 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0)
4542, 44eqtrd 2685 . . 3 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃𝐵) = 0)
4636, 37, 40, 1, 45, 13esumrnmpt2 30258 . 2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦) = Σ*𝑘𝐴(𝑃𝐵))
475, 35, 463eqtrd 2689 1 (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  {crab 2945  Vcvv 3231   ∖ cdif 3604   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  ∪ cuni 4468  ∪ ciun 4552  Disj wdisj 4652   class class class wbr 4685   ↦ cmpt 4762  ran crn 5144  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ωcom 7107   ≼ cdom 7995  0cc0 9974  +∞cpnf 10109  [,]cicc 12216  Σ*cesum 30217 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-ordt 16208  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-ps 17247  df-tsr 17248  df-plusf 17288  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-abv 18865  df-lmod 18913  df-scaf 18914  df-sra 19220  df-rgmod 19221  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tmd 21923  df-tgp 21924  df-tsms 21977  df-trg 22010  df-xms 22172  df-ms 22173  df-tms 22174  df-nm 22434  df-ngp 22435  df-nrg 22437  df-nlm 22438  df-ii 22727  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-esum 30218 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator