MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmss12g Structured version   Visualization version   GIF version

Theorem pmss12g 8427
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))

Proof of Theorem pmss12g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xpss12 5565 . . . . . . 7 ((𝐵𝐷𝐴𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
21ancoms 461 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
3 sstr 3975 . . . . . . 7 ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶))
43expcom 416 . . . . . 6 ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
52, 4syl 17 . . . . 5 ((𝐴𝐶𝐵𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
65anim2d 613 . . . 4 ((𝐴𝐶𝐵𝐷) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
76adantr 483 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
8 ssexg 5220 . . . . 5 ((𝐴𝐶𝐶𝑉) → 𝐴 ∈ V)
9 ssexg 5220 . . . . 5 ((𝐵𝐷𝐷𝑊) → 𝐵 ∈ V)
10 elpmg 8416 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
118, 9, 10syl2an 597 . . . 4 (((𝐴𝐶𝐶𝑉) ∧ (𝐵𝐷𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
1211an4s 658 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
13 elpmg 8416 . . . 4 ((𝐶𝑉𝐷𝑊) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
1413adantl 484 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
157, 12, 143imtr4d 296 . 2 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ∈ (𝐶pm 𝐷)))
1615ssrdv 3973 1 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  Vcvv 3495  wss 3936   × cxp 5548  Fun wfun 6344  (class class class)co 7150  pm cpm 8401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-pm 8403
This theorem is referenced by:  lmres  21902  dvnadd  24520  caures  35029
  Copyright terms: Public domain W3C validator