MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmss12g Structured version   Visualization version   GIF version

Theorem pmss12g 7828
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))

Proof of Theorem pmss12g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xpss12 5186 . . . . . . 7 ((𝐵𝐷𝐴𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
21ancoms 469 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
3 sstr 3591 . . . . . . 7 ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶))
43expcom 451 . . . . . 6 ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
52, 4syl 17 . . . . 5 ((𝐴𝐶𝐵𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
65anim2d 588 . . . 4 ((𝐴𝐶𝐵𝐷) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
76adantr 481 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
8 ssexg 4764 . . . . 5 ((𝐴𝐶𝐶𝑉) → 𝐴 ∈ V)
9 ssexg 4764 . . . . 5 ((𝐵𝐷𝐷𝑊) → 𝐵 ∈ V)
10 elpmg 7817 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
118, 9, 10syl2an 494 . . . 4 (((𝐴𝐶𝐶𝑉) ∧ (𝐵𝐷𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
1211an4s 868 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
13 elpmg 7817 . . . 4 ((𝐶𝑉𝐷𝑊) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
1413adantl 482 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
157, 12, 143imtr4d 283 . 2 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ∈ (𝐶pm 𝐷)))
1615ssrdv 3589 1 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  Vcvv 3186  wss 3555   × cxp 5072  Fun wfun 5841  (class class class)co 6604  pm cpm 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-pm 7805
This theorem is referenced by:  lmres  21014  dvnadd  23598  caures  33185
  Copyright terms: Public domain W3C validator