MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncomlem1 Structured version   Visualization version   GIF version

Theorem pmtr3ncomlem1 17825
Description: Lemma 1 for pmtr3ncom 17827. (Contributed by AV, 17-Mar-2018.)
Hypotheses
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
pmtr3ncom.f 𝐹 = (𝑇‘{𝑋, 𝑌})
pmtr3ncom.g 𝐺 = (𝑇‘{𝑌, 𝑍})
Assertion
Ref Expression
pmtr3ncomlem1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))

Proof of Theorem pmtr3ncomlem1
StepHypRef Expression
1 necom 2843 . . . . 5 (𝑌𝑍𝑍𝑌)
21biimpi 206 . . . 4 (𝑌𝑍𝑍𝑌)
323ad2ant3 1082 . . 3 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
433ad2ant3 1082 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
5 simp1 1059 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
6 simp1 1059 . . . . . . . . . 10 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
763ad2ant2 1081 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
8 simp2 1060 . . . . . . . . . 10 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑌𝐷)
983ad2ant2 1081 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
10 prssi 4326 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷) → {𝑋, 𝑌} ⊆ 𝐷)
117, 9, 10syl2anc 692 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
12 simp1 1059 . . . . . . . . . . 11 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
13123ad2ant3 1082 . . . . . . . . . 10 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝑌)
147, 9, 133jca 1240 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑋𝐷𝑌𝐷𝑋𝑌))
15 pr2nelem 8779 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2𝑜)
1614, 15syl 17 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2𝑜)
175, 11, 163jca 1240 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2𝑜))
18 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
1918pmtrf 17807 . . . . . . 7 ((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2𝑜) → (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
2017, 19syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
21 pmtr3ncom.f . . . . . . 7 𝐹 = (𝑇‘{𝑋, 𝑌})
2221feq1i 5998 . . . . . 6 (𝐹:𝐷𝐷 ↔ (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
2320, 22sylibr 224 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐹:𝐷𝐷)
24 ffn 6007 . . . . 5 (𝐹:𝐷𝐷𝐹 Fn 𝐷)
2523, 24syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐹 Fn 𝐷)
26 fvco2 6235 . . . 4 ((𝐹 Fn 𝐷𝑋𝐷) → ((𝐺𝐹)‘𝑋) = (𝐺‘(𝐹𝑋)))
2725, 7, 26syl2anc 692 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) = (𝐺‘(𝐹𝑋)))
2821fveq1i 6154 . . . . 5 (𝐹𝑋) = ((𝑇‘{𝑋, 𝑌})‘𝑋)
2918pmtrprfv 17805 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
305, 14, 29syl2anc 692 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
3128, 30syl5eq 2667 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹𝑋) = 𝑌)
3231fveq2d 6157 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺‘(𝐹𝑋)) = (𝐺𝑌))
33 pmtr3ncom.g . . . . 5 𝐺 = (𝑇‘{𝑌, 𝑍})
3433fveq1i 6154 . . . 4 (𝐺𝑌) = ((𝑇‘{𝑌, 𝑍})‘𝑌)
35 simp3 1061 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑍𝐷)
36353ad2ant2 1081 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
37 simp3 1061 . . . . . . 7 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑌𝑍)
38373ad2ant3 1082 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝑍)
399, 36, 383jca 1240 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑌𝐷𝑍𝐷𝑌𝑍))
4018pmtrprfv 17805 . . . . 5 ((𝐷𝑉 ∧ (𝑌𝐷𝑍𝐷𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑌) = 𝑍)
415, 39, 40syl2anc 692 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑌) = 𝑍)
4234, 41syl5eq 2667 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝑌) = 𝑍)
4327, 32, 423eqtrd 2659 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) = 𝑍)
44 prssi 4326 . . . . . . . . 9 ((𝑌𝐷𝑍𝐷) → {𝑌, 𝑍} ⊆ 𝐷)
458, 35, 44syl2anc 692 . . . . . . . 8 ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑌, 𝑍} ⊆ 𝐷)
46453ad2ant2 1081 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑌, 𝑍} ⊆ 𝐷)
47 pr2nelem 8779 . . . . . . . 8 ((𝑌𝐷𝑍𝐷𝑌𝑍) → {𝑌, 𝑍} ≈ 2𝑜)
4839, 47syl 17 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑌, 𝑍} ≈ 2𝑜)
495, 46, 483jca 1240 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2𝑜))
5018pmtrf 17807 . . . . . . 7 ((𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2𝑜) → (𝑇‘{𝑌, 𝑍}):𝐷𝐷)
5133feq1i 5998 . . . . . . 7 (𝐺:𝐷𝐷 ↔ (𝑇‘{𝑌, 𝑍}):𝐷𝐷)
5250, 51sylibr 224 . . . . . 6 ((𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2𝑜) → 𝐺:𝐷𝐷)
5349, 52syl 17 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐺:𝐷𝐷)
54 ffn 6007 . . . . 5 (𝐺:𝐷𝐷𝐺 Fn 𝐷)
5553, 54syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐺 Fn 𝐷)
56 fvco2 6235 . . . 4 ((𝐺 Fn 𝐷𝑋𝐷) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
5755, 7, 56syl2anc 692 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
5833fveq1i 6154 . . . . 5 (𝐺𝑋) = ((𝑇‘{𝑌, 𝑍})‘𝑋)
59 id 22 . . . . . 6 (𝐷𝑉𝐷𝑉)
60 3anrot 1041 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) ↔ (𝑌𝐷𝑍𝐷𝑋𝐷))
6160biimpi 206 . . . . . 6 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑌𝐷𝑍𝐷𝑋𝐷))
62 3anrot 1041 . . . . . . 7 ((𝑌𝑍𝑌𝑋𝑍𝑋) ↔ (𝑌𝑋𝑍𝑋𝑌𝑍))
63 necom 2843 . . . . . . . 8 (𝑌𝑋𝑋𝑌)
64 necom 2843 . . . . . . . 8 (𝑍𝑋𝑋𝑍)
65 biid 251 . . . . . . . 8 (𝑌𝑍𝑌𝑍)
6663, 64, 653anbi123i 1249 . . . . . . 7 ((𝑌𝑋𝑍𝑋𝑌𝑍) ↔ (𝑋𝑌𝑋𝑍𝑌𝑍))
6762, 66sylbbr 226 . . . . . 6 ((𝑋𝑌𝑋𝑍𝑌𝑍) → (𝑌𝑍𝑌𝑋𝑍𝑋))
6818pmtrprfv3 17806 . . . . . 6 ((𝐷𝑉 ∧ (𝑌𝐷𝑍𝐷𝑋𝐷) ∧ (𝑌𝑍𝑌𝑋𝑍𝑋)) → ((𝑇‘{𝑌, 𝑍})‘𝑋) = 𝑋)
6959, 61, 67, 68syl3an 1365 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑋) = 𝑋)
7058, 69syl5eq 2667 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝑋) = 𝑋)
7170fveq2d 6157 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹‘(𝐺𝑋)) = (𝐹𝑋))
7257, 71, 313eqtrd 2659 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐹𝐺)‘𝑋) = 𝑌)
734, 43, 723netr4d 2867 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wss 3559  {cpr 4155   class class class wbr 4618  ccom 5083   Fn wfn 5847  wf 5848  cfv 5852  2𝑜c2o 7506  cen 7904  pmTrspcpmtr 17793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-1o 7512  df-2o 7513  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pmtr 17794
This theorem is referenced by:  pmtr3ncomlem2  17826
  Copyright terms: Public domain W3C validator