Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem2 Structured version   Visualization version   GIF version

Theorem pmtrdifellem2 17818
 Description: Lemma 2 for pmtrdifel 17821. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem2 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))

Proof of Theorem pmtrdifellem2
StepHypRef Expression
1 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
21difeq1i 3702 . . 3 (𝑆 ∖ I ) = (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I )
32dmeqi 5285 . 2 dom (𝑆 ∖ I ) = dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I )
4 eqid 2621 . . . . 5 (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾}))
5 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
64, 5pmtrfb 17806 . . . 4 (𝑄𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2𝑜))
7 difsnexi 6919 . . . . 5 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
8 f1of 6094 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
9 fdm 6008 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾}))
10 difssd 3716 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄)
11 dmss 5283 . . . . . . . 8 ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
1210, 11syl 17 . . . . . . 7 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
13 difssd 3716 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
14 sseq1 3605 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
1513, 14mpbird 247 . . . . . . 7 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄𝑁)
1612, 15sstrd 3593 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
178, 9, 163syl 18 . . . . 5 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
18 id 22 . . . . 5 (dom (𝑄 ∖ I ) ≈ 2𝑜 → dom (𝑄 ∖ I ) ≈ 2𝑜)
197, 17, 183anim123i 1245 . . . 4 (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2𝑜) → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2𝑜))
206, 19sylbi 207 . . 3 (𝑄𝑇 → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2𝑜))
21 eqid 2621 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
2221pmtrmvd 17797 . . 3 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2𝑜) → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I ))
2320, 22syl 17 . 2 (𝑄𝑇 → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I ))
243, 23syl5eq 2667 1 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  Vcvv 3186   ∖ cdif 3552   ⊆ wss 3555  {csn 4148   class class class wbr 4613   I cid 4984  dom cdm 5074  ran crn 5075  ⟶wf 5843  –1-1-onto→wf1o 5846  ‘cfv 5847  2𝑜c2o 7499   ≈ cen 7896  pmTrspcpmtr 17782 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-1o 7505  df-2o 7506  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pmtr 17783 This theorem is referenced by:  pmtrdifellem3  17819  pmtrdifellem4  17820
 Copyright terms: Public domain W3C validator