MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdel2 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdel2 17846
Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifwrdel2 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑢 ∈ Word 𝑅((#‘𝑤) = (#‘𝑢) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑢,𝐾   𝑖,𝑁,𝑢   𝑇,𝑖   𝑅,𝑖,𝑢   𝑤,𝑖,𝑥,𝑢   𝑖,𝐾,𝑤   𝑤,𝑁
Allowed substitution hints:   𝑅(𝑥,𝑤)   𝑇(𝑤,𝑢)   𝐾(𝑥)

Proof of Theorem pmtrdifwrdel2
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
3 fveq2 6158 . . . . . . . . 9 (𝑗 = 𝑛 → (𝑤𝑗) = (𝑤𝑛))
43difeq1d 3711 . . . . . . . 8 (𝑗 = 𝑛 → ((𝑤𝑗) ∖ I ) = ((𝑤𝑛) ∖ I ))
54dmeqd 5296 . . . . . . 7 (𝑗 = 𝑛 → dom ((𝑤𝑗) ∖ I ) = dom ((𝑤𝑛) ∖ I ))
65fveq2d 6162 . . . . . 6 (𝑗 = 𝑛 → ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑤𝑛) ∖ I )))
76cbvmptv 4720 . . . . 5 (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) = (𝑛 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑛) ∖ I )))
81, 2, 7pmtrdifwrdellem1 17841 . . . 4 (𝑤 ∈ Word 𝑇 → (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅)
98adantl 482 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅)
101, 2, 7pmtrdifwrdellem2 17842 . . . 4 (𝑤 ∈ Word 𝑇 → (#‘𝑤) = (#‘(𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
1110adantl 482 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → (#‘𝑤) = (#‘(𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
121, 2, 7pmtrdifwrdel2lem1 17844 . . . . 5 ((𝑤 ∈ Word 𝑇𝐾𝑁) → ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾)
1312ancoms 469 . . . 4 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾)
141, 2, 7pmtrdifwrdellem3 17843 . . . . 5 (𝑤 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(#‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
1514adantl 482 . . . 4 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(#‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
16 r19.26 3059 . . . 4 (∀𝑖 ∈ (0..^(#‘𝑤))((((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)) ↔ (∀𝑖 ∈ (0..^(#‘𝑤))(((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(#‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
1713, 15, 16sylanbrc 697 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(#‘𝑤))((((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
18 fveq2 6158 . . . . . 6 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (#‘𝑢) = (#‘(𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
1918eqeq2d 2631 . . . . 5 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((#‘𝑤) = (#‘𝑢) ↔ (#‘𝑤) = (#‘(𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))))))
20 fveq1 6157 . . . . . . . . 9 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (𝑢𝑖) = ((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖))
2120fveq1d 6160 . . . . . . . 8 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((𝑢𝑖)‘𝐾) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾))
2221eqeq1d 2623 . . . . . . 7 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((𝑢𝑖)‘𝐾) = 𝐾 ↔ (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾))
2320fveq1d 6160 . . . . . . . . 9 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((𝑢𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
2423eqeq2d 2631 . . . . . . . 8 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥) ↔ ((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
2524ralbidv 2982 . . . . . . 7 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
2622, 25anbi12d 746 . . . . . 6 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)) ↔ ((((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))))
2726ralbidv 2982 . . . . 5 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (∀𝑖 ∈ (0..^(#‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)) ↔ ∀𝑖 ∈ (0..^(#‘𝑤))((((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))))
2819, 27anbi12d 746 . . . 4 (𝑢 = (𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((#‘𝑤) = (#‘𝑢) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))) ↔ ((#‘𝑤) = (#‘(𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))((((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))))
2928rspcev 3299 . . 3 (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅 ∧ ((#‘𝑤) = (#‘(𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))((((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(#‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))) → ∃𝑢 ∈ Word 𝑅((#‘𝑤) = (#‘𝑢) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
309, 11, 17, 29syl12anc 1321 . 2 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∃𝑢 ∈ Word 𝑅((#‘𝑤) = (#‘𝑢) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
3130ralrimiva 2962 1 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑢 ∈ Word 𝑅((#‘𝑤) = (#‘𝑢) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2908  wrex 2909  cdif 3557  {csn 4155  cmpt 4683   I cid 4994  dom cdm 5084  ran crn 5085  cfv 5857  (class class class)co 6615  0cc0 9896  ..^cfzo 12422  #chash 13073  Word cword 13246  pmTrspcpmtr 17801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-tset 15900  df-symg 17738  df-pmtr 17802
This theorem is referenced by:  psgndiflemA  19887
  Copyright terms: Public domain W3C validator