![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifwrdel2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for pmtrdifwrdel2 17952. (Contributed by AV, 31-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifwrdel.0 | ⊢ 𝑈 = (𝑥 ∈ (0..^(#‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) |
Ref | Expression |
---|---|
pmtrdifwrdel2lem1 | ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(#‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 476 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑖 ∈ (0..^(#‘𝑊))) | |
2 | fvex 6239 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V | |
3 | fveq2 6229 | . . . . . . . . 9 ⊢ (𝑥 = 𝑖 → (𝑊‘𝑥) = (𝑊‘𝑖)) | |
4 | 3 | difeq1d 3760 | . . . . . . . 8 ⊢ (𝑥 = 𝑖 → ((𝑊‘𝑥) ∖ I ) = ((𝑊‘𝑖) ∖ I )) |
5 | 4 | dmeqd 5358 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → dom ((𝑊‘𝑥) ∖ I ) = dom ((𝑊‘𝑖) ∖ I )) |
6 | 5 | fveq2d 6233 | . . . . . 6 ⊢ (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
7 | pmtrdifwrdel.0 | . . . . . 6 ⊢ 𝑈 = (𝑥 ∈ (0..^(#‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) | |
8 | 6, 7 | fvmptg 6319 | . . . . 5 ⊢ ((𝑖 ∈ (0..^(#‘𝑊)) ∧ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
9 | 1, 2, 8 | sylancl 695 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
10 | 9 | fveq1d 6231 | . . 3 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑈‘𝑖)‘𝐾) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾)) |
11 | wrdsymbcl 13350 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) | |
12 | 11 | adantlr 751 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) |
13 | simplr 807 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝐾 ∈ 𝑁) | |
14 | pmtrdifel.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
15 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
16 | eqid 2651 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) | |
17 | 14, 15, 16 | pmtrdifellem4 17945 | . . . 4 ⊢ (((𝑊‘𝑖) ∈ 𝑇 ∧ 𝐾 ∈ 𝑁) → (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾) = 𝐾) |
18 | 12, 13, 17 | syl2anc 694 | . . 3 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾) = 𝐾) |
19 | 10, 18 | eqtrd 2685 | . 2 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑈‘𝑖)‘𝐾) = 𝐾) |
20 | 19 | ralrimiva 2995 | 1 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(#‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ∖ cdif 3604 {csn 4210 ↦ cmpt 4762 I cid 5052 dom cdm 5143 ran crn 5144 ‘cfv 5926 (class class class)co 6690 0cc0 9974 ..^cfzo 12504 #chash 13157 Word cword 13323 pmTrspcpmtr 17907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-plusg 16001 df-tset 16007 df-symg 17844 df-pmtr 17908 |
This theorem is referenced by: pmtrdifwrdel2 17952 |
Copyright terms: Public domain | W3C validator |