MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrf Structured version   Visualization version   GIF version

Theorem pmtrf 17807
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrf ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃):𝐷𝐷)

Proof of Theorem pmtrf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll2 1099 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃𝐷)
2 1onn 7671 . . . . . . . 8 1𝑜 ∈ ω
32a1i 11 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 1𝑜 ∈ ω)
4 simpll3 1100 . . . . . . . 8 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ 2𝑜)
5 df-2o 7513 . . . . . . . 8 2𝑜 = suc 1𝑜
64, 5syl6breq 4659 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1𝑜)
7 simpr 477 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑧𝑃)
8 dif1en 8145 . . . . . . 7 ((1𝑜 ∈ ω ∧ 𝑃 ≈ suc 1𝑜𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1𝑜)
93, 6, 7, 8syl3anc 1323 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1𝑜)
10 en1uniel 7980 . . . . . 6 ((𝑃 ∖ {𝑧}) ≈ 1𝑜 (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
11 eldifi 3715 . . . . . 6 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
129, 10, 113syl 18 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
131, 12sseldd 3588 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝐷)
14 simplr 791 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ ¬ 𝑧𝑃) → 𝑧𝐷)
1513, 14ifclda 4097 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷)
16 eqid 2621 . . 3 (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
1715, 16fmptd 6346 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)):𝐷𝐷)
18 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1918pmtrval 17803 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
2019feq1d 5992 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → ((𝑇𝑃):𝐷𝐷 ↔ (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)):𝐷𝐷))
2117, 20mpbird 247 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃):𝐷𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cdif 3556  wss 3559  ifcif 4063  {csn 4153   cuni 4407   class class class wbr 4618  cmpt 4678  suc csuc 5689  wf 5848  cfv 5852  ωcom 7019  1𝑜c1o 7505  2𝑜c2o 7506  cen 7904  pmTrspcpmtr 17793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-1o 7512  df-2o 7513  df-er 7694  df-en 7908  df-fin 7911  df-pmtr 17794
This theorem is referenced by:  pmtrmvd  17808  pmtrfinv  17813  pmtrff1o  17815  pmtrfcnv  17816  pmtr3ncomlem1  17825  mdetralt  20346  mdetunilem7  20356
  Copyright terms: Public domain W3C validator