MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfval Structured version   Visualization version   GIF version

Theorem pmtrfval 17810
Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfval (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Distinct variable groups:   𝑦,𝑝,𝑧,𝐷   𝑇,𝑝,𝑦,𝑧   𝑧,𝑉
Allowed substitution hints:   𝑉(𝑦,𝑝)

Proof of Theorem pmtrfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . 2 𝑇 = (pmTrsp‘𝐷)
2 elex 3202 . . 3 (𝐷𝑉𝐷 ∈ V)
3 pweq 4139 . . . . . 6 (𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷)
43rabeqdv 3184 . . . . 5 (𝑑 = 𝐷 → {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2𝑜} = {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜})
5 mpteq1 4707 . . . . 5 (𝑑 = 𝐷 → (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
64, 5mpteq12dv 4703 . . . 4 (𝑑 = 𝐷 → (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2𝑜} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
7 df-pmtr 17802 . . . 4 pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2𝑜} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
8 vpwex 4819 . . . . 5 𝒫 𝑑 ∈ V
98mptrabex 6453 . . . 4 (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2𝑜} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∈ V
106, 7, 9fvmpt3i 6254 . . 3 (𝐷 ∈ V → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
112, 10syl 17 . 2 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
121, 11syl5eq 2667 1 (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {crab 2912  Vcvv 3190  cdif 3557  ifcif 4064  𝒫 cpw 4136  {csn 4155   cuni 4409   class class class wbr 4623  cmpt 4683  cfv 5857  2𝑜c2o 7514  cen 7912  pmTrspcpmtr 17801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-pmtr 17802
This theorem is referenced by:  pmtrval  17811  pmtrrn  17817  pmtrfrn  17818  pmtrprfval  17847  pmtrsn  17879
  Copyright terms: Public domain W3C validator