MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv Structured version   Visualization version   GIF version

Theorem pmtrprfv 18510
Description: In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)

Proof of Theorem pmtrprfv
StepHypRef Expression
1 simpl 483 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝐷𝑉)
2 simpr1 1186 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝐷)
3 simpr2 1187 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
42, 3prssd 4747 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ⊆ 𝐷)
5 pr2nelem 9418 . . . 4 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
65adantl 482 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ≈ 2o)
7 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
87pmtrfv 18509 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑋𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
91, 4, 6, 2, 8syl31anc 1365 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
10 prid1g 4688 . . . . 5 (𝑋𝐷𝑋 ∈ {𝑋, 𝑌})
112, 10syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
1211iftrued 4471 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = ({𝑋, 𝑌} ∖ {𝑋}))
13 difprsnss 4724 . . . . . . 7 ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌}
1413a1i 11 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌})
15 prid2g 4689 . . . . . . . . 9 (𝑌𝐷𝑌 ∈ {𝑋, 𝑌})
163, 15syl 17 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
17 simpr3 1188 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝑌)
1817necomd 3068 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝑋)
19 eldifsn 4711 . . . . . . . 8 (𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}) ↔ (𝑌 ∈ {𝑋, 𝑌} ∧ 𝑌𝑋))
2016, 18, 19sylanbrc 583 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}))
2120snssd 4734 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} ⊆ ({𝑋, 𝑌} ∖ {𝑋}))
2214, 21eqssd 3981 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
2322unieqd 4840 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
24 unisng 4845 . . . . 5 (𝑌𝐷 {𝑌} = 𝑌)
253, 24syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} = 𝑌)
2623, 25eqtrd 2853 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = 𝑌)
2712, 26eqtrd 2853 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = 𝑌)
289, 27eqtrd 2853 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  cdif 3930  wss 3933  ifcif 4463  {csn 4557  {cpr 4559   cuni 4830   class class class wbr 5057  cfv 6348  2oc2o 8085  cen 8494  pmTrspcpmtr 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pmtr 18499
This theorem is referenced by:  symggen  18527  pmtr3ncomlem1  18530  mdetralt  21145  mdetunilem7  21155  pmtrprfv2  30659  pmtridfv1  30664  psgnfzto1stlem  30669
  Copyright terms: Public domain W3C validator