Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrprfv2 Structured version   Visualization version   GIF version

Theorem pmtrprfv2 29630
Description: In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypothesis
Ref Expression
pmtrprfv2.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋)

Proof of Theorem pmtrprfv2
StepHypRef Expression
1 prcom 4237 . . . 4 {𝑌, 𝑋} = {𝑋, 𝑌}
21fveq2i 6151 . . 3 (𝑇‘{𝑌, 𝑋}) = (𝑇‘{𝑋, 𝑌})
32fveq1i 6149 . 2 ((𝑇‘{𝑌, 𝑋})‘𝑌) = ((𝑇‘{𝑋, 𝑌})‘𝑌)
4 ancom 466 . . . . . . 7 ((𝑋𝐷𝑌𝐷) ↔ (𝑌𝐷𝑋𝐷))
5 necom 2843 . . . . . . 7 (𝑋𝑌𝑌𝑋)
64, 5anbi12i 732 . . . . . 6 (((𝑋𝐷𝑌𝐷) ∧ 𝑋𝑌) ↔ ((𝑌𝐷𝑋𝐷) ∧ 𝑌𝑋))
7 df-3an 1038 . . . . . 6 ((𝑋𝐷𝑌𝐷𝑋𝑌) ↔ ((𝑋𝐷𝑌𝐷) ∧ 𝑋𝑌))
8 df-3an 1038 . . . . . 6 ((𝑌𝐷𝑋𝐷𝑌𝑋) ↔ ((𝑌𝐷𝑋𝐷) ∧ 𝑌𝑋))
96, 7, 83bitr4i 292 . . . . 5 ((𝑋𝐷𝑌𝐷𝑋𝑌) ↔ (𝑌𝐷𝑋𝐷𝑌𝑋))
109biimpi 206 . . . 4 ((𝑋𝐷𝑌𝐷𝑋𝑌) → (𝑌𝐷𝑋𝐷𝑌𝑋))
1110anim2i 592 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → (𝐷𝑉 ∧ (𝑌𝐷𝑋𝐷𝑌𝑋)))
12 pmtrprfv2.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1312pmtrprfv 17794 . . 3 ((𝐷𝑉 ∧ (𝑌𝐷𝑋𝐷𝑌𝑋)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋)
1411, 13syl 17 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋)
153, 14syl5eqr 2669 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  {cpr 4150  cfv 5847  pmTrspcpmtr 17782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-1o 7505  df-2o 7506  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pmtr 17783
This theorem is referenced by:  psgnfzto1stlem  29632
  Copyright terms: Public domain W3C validator