MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrsn Structured version   Visualization version   GIF version

Theorem pmtrsn 18649
Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for 𝐴 ∉ V, i.e. for the empty set {𝐴} = ∅ resulting in (pmTrsp‘∅) = ∅. (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
pmtrsn (pmTrsp‘{𝐴}) = ∅

Proof of Theorem pmtrsn
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5334 . . 3 {𝐴} ∈ V
2 eqid 2823 . . . 4 (pmTrsp‘{𝐴}) = (pmTrsp‘{𝐴})
32pmtrfval 18580 . . 3 ({𝐴} ∈ V → (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 eqid 2823 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
65dmmpt 6096 . . . 4 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
7 2on0 8115 . . . . . . . . 9 2o ≠ ∅
8 ensymb 8559 . . . . . . . . . 10 (∅ ≈ 2o ↔ 2o ≈ ∅)
9 en0 8574 . . . . . . . . . 10 (2o ≈ ∅ ↔ 2o = ∅)
108, 9bitri 277 . . . . . . . . 9 (∅ ≈ 2o ↔ 2o = ∅)
117, 10nemtbir 3114 . . . . . . . 8 ¬ ∅ ≈ 2o
12 snnen2o 8709 . . . . . . . 8 ¬ {𝐴} ≈ 2o
13 0ex 5213 . . . . . . . . 9 ∅ ∈ V
14 breq1 5071 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 ≈ 2o ↔ ∅ ≈ 2o))
1514notbid 320 . . . . . . . . 9 (𝑦 = ∅ → (¬ 𝑦 ≈ 2o ↔ ¬ ∅ ≈ 2o))
16 breq1 5071 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ≈ 2o ↔ {𝐴} ≈ 2o))
1716notbid 320 . . . . . . . . 9 (𝑦 = {𝐴} → (¬ 𝑦 ≈ 2o ↔ ¬ {𝐴} ≈ 2o))
1813, 1, 15, 17ralpr 4638 . . . . . . . 8 (∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o ↔ (¬ ∅ ≈ 2o ∧ ¬ {𝐴} ≈ 2o))
1911, 12, 18mpbir2an 709 . . . . . . 7 𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o
20 pwsn 4832 . . . . . . . 8 𝒫 {𝐴} = {∅, {𝐴}}
2120raleqi 3415 . . . . . . 7 (∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o ↔ ∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o)
2219, 21mpbir 233 . . . . . 6 𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o
23 rabeq0 4340 . . . . . 6 ({𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅ ↔ ∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o)
2422, 23mpbir 233 . . . . 5 {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅
2524rabeqi 3484 . . . 4 {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
26 rab0 4339 . . . 4 {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = ∅
276, 25, 263eqtri 2850 . . 3 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
28 mptrel 5699 . . . 4 Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
29 reldm0 5800 . . . 4 (Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅))
3028, 29ax-mp 5 . . 3 ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅)
3127, 30mpbir 233 . 2 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
324, 31eqtri 2846 1 (pmTrsp‘{𝐴}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  c0 4293  ifcif 4469  𝒫 cpw 4541  {csn 4569  {cpr 4571   cuni 4840   class class class wbr 5068  cmpt 5148  dom cdm 5557  Rel wrel 5562  cfv 6357  2oc2o 8098  cen 8508  pmTrspcpmtr 18571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pmtr 18572
This theorem is referenced by:  psgnsn  18650
  Copyright terms: Public domain W3C validator